【題目】如圖,等腰直角△ABC中,∠BAC=90,AD⊥BC于D,∠ABC的平分線分別交AC、AD于E、F兩點,M為EF的中點,延長AM交BC于點N,連接DM.下列結論:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正確的結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】試題解析:∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,故①正確;
∵M為EF的中點,
∴AM⊥EF,故②正確;
過點F作FH⊥AB于點H,
∵BE平分∠ABC,且AD⊥BC,
∴FD=FH<FA,故③錯誤;
∵AM⊥EF,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中
∴△FBD≌△NAD,
∴DF=DN,故④正確;
故選C.
科目:初中數學 來源: 題型:
【題目】2016年里約奧運會,中國女排的姑娘們在郎平教練指導下,通過刻苦訓練,取得了世界冠軍,為國爭光,如圖,已知排球場的長度OD為18米,位于球場中線處球網的高度AB為2.43米,一隊員站在點O處發(fā)球,排球從點O的正上方1.8米的C點向正前方飛出,當排球運行至離點O的水平距離OE為7米時,到達最高點G建立如圖所示的平面直角坐標系.
(1)當球上升的最大高度為3.2米時,求排球飛行的高度y(單位:米)與水平距離x(單位:米)的函數關系式.(不要求寫自變量x的取值范圍).
(2)在(1)的條件下,對方距球網0.5米的點F處有一隊員,他起跳后的最大高度為3.1米,問這次她是否可以攔網成功?請通過計算說明.
(3)若隊員發(fā)球既要過球網,又不出邊界,問排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒出界)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了解學生平均每天“誦讀經典”的時間,在全校范圍內隨機抽查了部分學生進行調查統計(設每天的誦讀時間為分鐘),將調查統計的結果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數據繪制成如下兩幅不完整的統計圖.請根據圖中提供的信息,解答下列問題:
()請補全上面的條形圖.
()所抽查學生“誦讀經典”時間的中位數落在__________級.
()如果該校共有名學生,請你估計該校平均每天“誦讀經典”的時間不低于分鐘的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實數m滿足(m-2018)2+(2019-m)2=15,則(m-2018)(2019-m)值是( 。
A. 0 B. 1 C. -7 D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,老師讓學生尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認為這種作法中判斷∠ACB是直角的依據是( 。
A. 勾股定理 B. 直徑所對的圓周角是直角
C. 勾股定理的逆定理 D. 90°的圓周角所對的弦是直徑
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面每組數分別是三根小木棒的長度,它們能擺成三角形的是( )
A.12cm,3cm,6cm
B.8cm,16cm,8cm
C.6cm,6cm,13cm
D.2cm,3cm,4cm
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com