【題目】一根新生的蘆葦高出水面1尺,一陣風(fēng)吹過,蘆葦被吹倒一邊,頂端齊至水面,蘆葦移動(dòng)的水平距離為5尺,求水池的深度和蘆葦?shù)拈L(zhǎng)度各是多少?

【答案】水池深度為12尺,蘆葦長(zhǎng)度為13尺.

【解析】

仔細(xì)分析題意得出:此題中水深、蘆葦長(zhǎng)及蘆葦移動(dòng)的水平距離構(gòu)成一直角三角形,解此直角三角形即可.

解:若高水池深度為x尺,則蘆葦長(zhǎng)為(x+1)尺,

根據(jù)勾股定理得x2+52=(x+1)2,

解得:x=12尺,

即水池深度為12尺,則蘆葦長(zhǎng)度為13尺.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩商場(chǎng)各自推出不同的優(yōu)惠方案在甲商場(chǎng)累計(jì)購(gòu)物超過100元后,超出100元的部分按90%收費(fèi);在乙商場(chǎng)累計(jì)購(gòu)物超過50元后,超出50元的部分按95%收費(fèi),設(shè)小紅在同一商場(chǎng)累計(jì)購(gòu)物x,其中x>100.

(1)根據(jù)題意,填寫下表(單位元)

(2)當(dāng)x取何值時(shí),小紅在甲、乙兩商場(chǎng)的實(shí)際花費(fèi)金額相同?

(3)請(qǐng)你根據(jù)小紅累計(jì)購(gòu)物的金額選擇花費(fèi)較少的商場(chǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)鏈接將兩個(gè)含30°角的全等三角尺放在一起讓兩個(gè)30°角合在一起成60°,經(jīng)過拼湊、觀察、思考,探究出“直角三角形中30°角所對(duì)的直角邊等于斜邊的一半”結(jié)論

如圖等邊三角形ABC的邊長(zhǎng)為4cm,點(diǎn)D從點(diǎn)C出發(fā)沿CAA運(yùn)動(dòng),點(diǎn)EB出發(fā)沿AB的延長(zhǎng)線BF向右運(yùn)動(dòng),已知點(diǎn)D、E都以每秒0.5cm的速度同時(shí)開始運(yùn)動(dòng)運(yùn)動(dòng)過程中DEBC相交于點(diǎn)P,設(shè)運(yùn)動(dòng)時(shí)間為x

1)請(qǐng)直接寫出AD長(zhǎng).(用x的代數(shù)式表示)

2)當(dāng)△ADE為直角三角形時(shí),運(yùn)動(dòng)時(shí)間為幾秒?

2)求證在運(yùn)動(dòng)過程中,點(diǎn)P始終為線段DE的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是優(yōu)弧BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、D重合).

1)當(dāng)圓心O∠BAD內(nèi)部,∠ABO+∠ADO=60°時(shí),∠BOD=

2)當(dāng)圓心O∠BAD內(nèi)部,四邊形OBCD為平行四邊形時(shí),求∠A的度數(shù);

3)當(dāng)圓心O∠BAD外部,四邊形OBCD為平行四邊形時(shí),請(qǐng)直接寫出∠ABO∠ADO的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年《政府工作報(bào)告》中提出了十大新詞匯,為了解同學(xué)們對(duì)新詞匯的關(guān)注度,某數(shù)學(xué)興趣小組選取其中的A互聯(lián)網(wǎng)+政務(wù)服務(wù),B工匠精神,C光網(wǎng)城市,D大眾旅游時(shí)代四個(gè)熱詞在全校學(xué)生中進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位同學(xué)只能從中選擇一個(gè)我最關(guān)注的熱詞.根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名同學(xué)?

2)條形統(tǒng)計(jì)圖中,m= ,n= ;

3)扇形統(tǒng)計(jì)圖中,熱詞B所在扇形的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 中點(diǎn), 平分

(1)若已知 ,求證: 平分

(2)DNAM,求證:DC+AB=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BDCE相交于點(diǎn)O,再連接AO、BC,若∠1=2,則圖中全等三角形共有(  )

A. 5對(duì) B. 6對(duì) C. 7對(duì) D. 8對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角ABC中,∠BAC=90,ADBCD,ABC的平分線分別交AC、ADEF兩點(diǎn),MEF的中點(diǎn),延長(zhǎng)AMBC于點(diǎn)N,連接DM.下列結(jié)論:①AE=AFAMEF;AF=DF;DF=DN,其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB⊙O的直徑,D⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC;

(2)當(dāng)∠ODB30°時(shí),求證:BCOD.

查看答案和解析>>

同步練習(xí)冊(cè)答案
<dfn id="5xlxu"><input id="5xlxu"></input></dfn>
  • <rp id="5xlxu"><tr id="5xlxu"></tr></rp>