【題目】(1)如圖1.在Rt△ABC中,∠C=90°,AC=BC,AP、BP分別平分∠CAB、∠CBA,過點(diǎn)P作DE∥AB交AC于點(diǎn)D,交BC于點(diǎn)E.求證:①點(diǎn)P是線段DE的中點(diǎn);②求證:BP2=BE·BA;
(2)如圖2.在Rt△ABC中,∠C=90°,AB=13,BC=12,BP平分∠ABC,過點(diǎn)P作DE∥AB交AC于點(diǎn)D,交BC于點(diǎn)E,若點(diǎn)P為線段DE的中點(diǎn),求AD的長度.
【答案】(1)①見解析,②見解析;(2)
【解析】
(1)①由角平分線的性質(zhì)和平行線的性質(zhì)得到,根據(jù)等角對等邊得到EB=PE,同理得到AD=DP.由平行線分線段成比例定理得到,進(jìn)而得到EP=DP,即可得出結(jié)論;
②先證,由相似三角形對應(yīng)邊成比例得到,即可得出結(jié)論;
(2)根據(jù)勾股定理,得到AC的長.由(1)得.設(shè)AD=x,則,設(shè)AD=x,則.有平行線分線段成比例定理可求出BE的長,進(jìn)而得到CE、DE的長.在Rt△CDE中,根據(jù)勾股定理即可得到結(jié)論.
(1)①證明:∵平分,
∴.
∵,
∴,
∴,
∴,
同理.
∵,
∴,
∵,
∴,
∴,即,
∴,
∴是的中點(diǎn);
②由①得,
∵平分,
∴.
∵,
∴,
∴,
∴,
∴,
∴;
(2)由勾股定理,得:.
由(1)得.
設(shè)AD=x,則.
∵,
∴,
∴,
∴BE=,
∴EP=PD=BE=,,
∴DE=.
在Rt△CDE中,∵,
∴,解得:,或(不合題意,舍去).故AD的長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線:和直線:,點(diǎn)和均在直線上.
(1)求直線的解析式;
(2)若拋物線過點(diǎn),且拋物線與線段有兩個(gè)不同的交點(diǎn),求的取值范圍;
(3)將直線下移2個(gè)單位得到直線,直線與拋物線:交于、兩點(diǎn),若點(diǎn)的橫坐標(biāo)為,點(diǎn)的橫坐標(biāo)為,當(dāng),時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)(x>0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y2=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(溫馨提示:平面上有任意兩點(diǎn)M(x1,y1)、N(x2,y2),它們連線的中點(diǎn)P的坐標(biāo)為( ))(2)求△OEF的面積;
(3)請結(jié)合圖象直接寫出不等式k2x -b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線過點(diǎn),,點(diǎn)為直線下方拋物線上一動(dòng)點(diǎn),為拋物線頂點(diǎn),拋物線對稱軸與直線交于點(diǎn).
(1)求拋物線的表達(dá)式與頂點(diǎn)的坐標(biāo);
(2)在直線上是否存在點(diǎn),使得,,,為頂點(diǎn)的四邊形是平行四邊形,若存在,請求出點(diǎn)坐標(biāo);
(3)在軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C三個(gè)城市位置如圖所示,A城在B城正南方向180 km處,C城在B城南偏東37°方向.已知一列貨車從A城出發(fā)勻速駛往B城,同時(shí)一輛客車從B城出發(fā)勻速駛往C城,出發(fā)1小時(shí)后,貨車到達(dá)P地,客車到達(dá)M地,此時(shí)測得∠BPM=26°,兩車又繼續(xù)行駛1小時(shí),貨車到達(dá)Q地,客車到達(dá)N地,此時(shí)測得∠BNQ=45°,求兩車的速度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin26°≈,cos26°≈,tan26°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)拱頂高離水面2m時(shí),水面寬4m,水面下降2.5m,水面寬度增加( 。
A. 1 m B. 2 m C. 3 m D. 6 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,過點(diǎn)A作直線MN,且∠MAC=∠ABC.
(1)求證:MN是⊙O的切線.
(2)設(shè)D是弧AC的中點(diǎn),連結(jié)BD交AC于點(diǎn)G,過點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F.
①求證:FD=FG.
②若BC=3,AB=5,試求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在“飛鏢形”ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).
(1)求證:四邊形EFGH是平行四邊形;
(2)“飛鏢形”ABCD滿足條件 時(shí),四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的一點(diǎn)H重合(H不與端點(diǎn)C,D重合),折痕交AD于點(diǎn)AB E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G,設(shè)正方形ABCD的周長為m,的周長為n,則的值為( )
A.B.C.D.隨H點(diǎn)位置的變化而變化
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com