【題目】如圖1,拋物線過點(diǎn),,點(diǎn)為直線下方拋物線上一動(dòng)點(diǎn),為拋物線頂點(diǎn),拋物線對(duì)稱軸與直線交于點(diǎn).
(1)求拋物線的表達(dá)式與頂點(diǎn)的坐標(biāo);
(2)在直線上是否存在點(diǎn),使得,,,為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)求出點(diǎn)坐標(biāo);
(3)在軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1),點(diǎn)的坐標(biāo)為(1,-4);(2)符合條件的點(diǎn)的坐標(biāo)為,;(3)點(diǎn)的坐標(biāo)為或.
【解析】
(1),代入拋物線即可求出拋物線解析式,配方即可求出頂點(diǎn)坐標(biāo);
(2)用待定系數(shù)法求出直線的表達(dá)式為,求得MN=1,分①若為平行四邊形的一邊,則有,且及②若為平行四邊形的對(duì)角線,進(jìn)行解答即可;
(3)構(gòu)造,使得,作軸,則,根據(jù)勾股定理可得,即可求出點(diǎn)的坐標(biāo)
(1)把,代入拋物線得
解得:
∴
∵
∴點(diǎn)的坐標(biāo)為(1,-4).
(2)設(shè)直線的表達(dá)式為,則
解得:
∴直線的表達(dá)式為.
當(dāng)時(shí),,
∴點(diǎn)的坐標(biāo)為(1,-3),
∴.
①若為平行四邊形的一邊,則有,且.
設(shè)點(diǎn)坐標(biāo),則,
∴,
∴(舍去),.
∴點(diǎn)坐標(biāo)為.
②若為平行四邊形的對(duì)角線,設(shè),則.
代入拋物線得:,解得(舍去),,
∴
綜上所述,符合條件的點(diǎn)的坐標(biāo)為,.
(3)
如圖,在對(duì)稱軸上取點(diǎn),易得,且,以為圓心,為半徑作圓交軸與點(diǎn),則.作軸,則,
又∵,
∴
∴點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),拋物線與軸的一個(gè)交點(diǎn)為(點(diǎn)在點(diǎn)的左側(cè)),過點(diǎn)作垂直軸交直線于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn)
①求點(diǎn)的坐標(biāo);
②將拋物線向右平移使它經(jīng)過點(diǎn),此時(shí)得到的拋物線記為,求出拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:圓中有公共端點(diǎn)的兩條弦組成的折線稱為圓的一條折弦.阿基米德折弦定理:如圖1,AB和BC組成圓的折弦,AB>BC,M是弧ABC的中點(diǎn),MF⊥AB于F,則AF=FB+BC.
如圖2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一點(diǎn),BD=1,作DE⊥AB交△ABC的外接圓于E,連接EA,則∠EAC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,圓心O在坐標(biāo)原點(diǎn),正方形ABCD的邊長(zhǎng)為2,點(diǎn)A、B在第二象限,點(diǎn)C、D在⊙O上,且點(diǎn)D的坐標(biāo)為(0,2),現(xiàn)將正方形ABCD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)B運(yùn)動(dòng)到了⊙O上點(diǎn)B1處,點(diǎn)A、D分別運(yùn)動(dòng)到了點(diǎn)A1、D1處,即得到正方形A1B1C1D1(點(diǎn)C1與C重合);再將正方形A1B1C1D1繞點(diǎn)B1按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)A1運(yùn)動(dòng)到了⊙O上點(diǎn)A2處,點(diǎn)D1、C1分別運(yùn)動(dòng)到了點(diǎn)D2、C2處,即得到正方形A2B2C2D2(點(diǎn)B2與B1重合),…,按上述方法旋轉(zhuǎn)2020次后,點(diǎn)A2020的坐標(biāo)為( )
A.(0,2)B.(2+,﹣1)
C.(﹣1﹣,﹣1﹣)D.(1,﹣2﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九年級(jí)學(xué)生步行到郊外春游.一班的學(xué)生組成前隊(duì),速度為4km/h ,二班的學(xué)生組成后隊(duì),速度為6km/h .前隊(duì)出發(fā)1h 后,后隊(duì)才出發(fā),同時(shí),后隊(duì)派一名聯(lián)絡(luò)員騎自行車在兩隊(duì)之間不間斷地來回進(jìn)行聯(lián)絡(luò),他騎車的速度為12km/h.若不計(jì)隊(duì)伍的長(zhǎng)度,如圖,折線ABC ,A-B-C 分別表示后隊(duì),聯(lián)絡(luò)員在行進(jìn)過程中,離前隊(duì)的路程 與后隊(duì)行進(jìn)時(shí)間x(h) 之間的部分函數(shù)圖象.
(1) 求線段AB 對(duì)應(yīng)的函數(shù)關(guān)系式;
(2) 求點(diǎn)E 的坐標(biāo),并說明它的實(shí)際意義;
(3) 聯(lián)絡(luò)員從出發(fā)到他折返后第一次與后隊(duì)相遇的過程中,當(dāng)x 為何值時(shí),他離前隊(duì)的路程與他離后隊(duì)的路程相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1.在Rt△ABC中,∠C=90°,AC=BC,AP、BP分別平分∠CAB、∠CBA,過點(diǎn)P作DE∥AB交AC于點(diǎn)D,交BC于點(diǎn)E.求證:①點(diǎn)P是線段DE的中點(diǎn);②求證:BP2=BE·BA;
(2)如圖2.在Rt△ABC中,∠C=90°,AB=13,BC=12,BP平分∠ABC,過點(diǎn)P作DE∥AB交AC于點(diǎn)D,交BC于點(diǎn)E,若點(diǎn)P為線段DE的中點(diǎn),求AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)若這種冰箱的售價(jià)降低50元,每天的利潤(rùn)是 元;
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到更多的實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí)利潤(rùn)最高,并求出最高利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com