(1)解下列方程:①x2-2x-2=0;②2x2+3x-1=0;③2x2-4x+1=0;④x2+6x+3=0;
(2)上面的四個方程中,有三個方程的一次項系數(shù)有共同特點,請你用代數(shù)式表示這個特點,并推導(dǎo)出具有這個特點的一元二次方程的求根公式 .
【答案】
分析:(1)直接代入公式計算即可.
(2)其中方程①③④的一次項系數(shù)為偶數(shù)2n(n是整數(shù)).然后再利用求根公式代入計算即可.
解答:解:(1)①解方程x
2-2x-2=0①,
∵a=1,b=-2,c=-2,
∴x=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/0.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/1.png)
=1
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/2.png)
,
∴x
1=1+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/3.png)
,x
2=1
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/4.png)
.
②解方程2x
2+3x-l=0,
∵a=2,b=3,c=-1,
∴x=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/5.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/6.png)
,
∴x
1=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/7.png)
,x
2=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/8.png)
.(2分)
③解方程2x
2-4x+1=0,
∵a=2,b=-4,c=1,
∴x=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/9.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/10.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/11.png)
,
x
1=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/12.png)
,x
2=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/13.png)
.(3分)
④解方程x
2+6x+3=0,
∵a=1,b=6,c=3,
∴x=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/14.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/15.png)
=-3
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/16.png)
,
∴x
1=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/17.png)
,x
2=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/18.png)
.(4分)
(2)其中方程①③④的一次項系數(shù)為偶數(shù)2n(n是整數(shù)).(8分)
一元二次方程ax
2+bx+c=0,其中b
2-4ac≥0,b=2n,n為整數(shù).
∵b
2-4ac≥0,即(2n)
2-4ac≥0,
∴n
2-ac≥0,
∴x=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/19.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/20.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/21.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/22.png)
(11分)
∴一元二次方程ax
2+2nx+c=0(n
2-ac≥0)的求根公式為
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022162312111932648/SYS201310221623121119326019_DA/23.png)
.(12分)
點評:本題主要考查了解一元二次方程的公式法.關(guān)鍵是正確理解求根公式,正確對二次根式進(jìn)行化簡.