【題目】七(1)班同學為了解2018年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理,請解答以下問題:

1)求,的值.并把頻數(shù)直方圖補充完整;

2)求該小區(qū)用水量不超過的家庭占被調(diào)在家庭總數(shù)的百分比;

3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水是超過的家庭大約有多少戶?

【答案】1,,圖詳見解析;(2;(3120

【解析】

1)根據(jù)中頻數(shù)為,頻率為,則調(diào)查總戶數(shù)為,進而得出在范圍內(nèi)的頻數(shù)以及在范圍內(nèi)的頻率;由頻數(shù)分布表中的數(shù)據(jù)補全直方圖即可;

2)根據(jù)(1)中所求即可得出不超過的家庭總數(shù)即可求出,不超過的家庭占被調(diào)查家庭總數(shù)的百分比;

3)根據(jù)樣本數(shù)據(jù)中超過的家庭數(shù),即可得出戶家庭超過的家庭數(shù).

解:(1)∵調(diào)查的家庭總數(shù)是:

∴月用電量的戶數(shù)是:戶;月用電量所占的比例是:

頻數(shù)分布直方圖如下:

;

2

答:該小區(qū)用水量不超過的家庭占被調(diào)查家庭總數(shù)的百分比是

(3)

答:該小區(qū)月均用水量超過的家庭大約有戶.

故答案是:(1,,圖詳見解析;(2;(3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“陽光體育”活動的開展情況,從全校1000名學生中,隨機抽取部分學生進行問卷調(diào)查(每名學生只能從A、B、C、D中選擇一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖

A:踢毽子 B:乒乓球 C:籃球 D:跳繩

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學生共有 人,并補全條形統(tǒng)計圖;

2在扇形統(tǒng)計圖中,求表示區(qū)域D的扇形圓心角的度數(shù);

3)全校學生中喜歡籃球的人數(shù)大約是多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BAD=BCD=90°,連接AC.若AC=6,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(-1,12),B(2,-3).

(1)求這個二次函數(shù)的解析式;

(2)求這個圖象的頂點坐標及與x軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個數(shù)能表示成某個整數(shù)的平方的形式,則稱這個數(shù)為完全平方數(shù),完全平方數(shù)是非負數(shù).例如:002,112422,932,16422552,3662,121112….

1)若28+210+2n是完全平方數(shù),求n的值.

2)若一個正整數(shù),它加上61是一個完全平方數(shù),當減去11是另一個完全平方數(shù),寫出所有符合的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD的頂點為A1,2),B(﹣1,2),C(﹣1,﹣2),D1,﹣2).點M和點N同時從E點出發(fā),沿四邊形的邊做環(huán)繞勻速運動,M點以1單位/s的速度做逆時針運動,N點以2單位/s的速度做順時針運動,則點M和點N2016次相遇時的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=2,AC=AD,增加下列條件:①AB=AE;BC=DE;③∠C=D;④∠B=E,其中能使△ABC≌△AED的條件是______________.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)課本習題回放:如圖①,ACB=90°,AC=BC, ADCE,BECE,垂足分別為D,E,AD=2.5cm,DE=1.7cm..BE的長.

2)探索證明:如圖②,點B、C在∠MAN的邊AM、AN上,點E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是ABE、CAF的外角.已知AB=AC,1=2=BAC.求證:ABE≌△CAF.

查看答案和解析>>

同步練習冊答案