【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE.
⑴若∠BAE=40°,求∠C的度數(shù);
⑵若△ABC周長13cm,AC=6cm,求DC長.
【答案】(1)35°;(2)3.5cm.
【解析】試題分析:⑴根據(jù)垂直平分線的性質(zhì)易得∠C=∠CAE,AB=AE=EC,由三角形外角的性質(zhì)可知∠AED=2∠C,再由三角形內(nèi)角和定理即可求得所求角的度數(shù).
⑵根據(jù)△ABC的周長與題中所給條件,可知AB+BC的長度,由⑴中所得相等的邊易得 ,從而求得DC的長.
試題解析:⑴ ∵AD垂直平分BE,EF垂直平分AC,
∴AB=AE=EC,
∴∠C =∠CAE,∵∠BAE=40°,
∴∠AED =70°,∴;
⑵ ∵△ABC周長為13 cm,AC=6 cm,
∴AB+BE+EC=7 cm,即2DE+2EC=7 cm,
∴DE+EC=DC=3.5cm.
科目:初中數(shù)學 來源: 題型:
【題目】下列運算結(jié)果正確的是( )
A. x2+x3=x5 B. x3·x2=x6
C. (-2x2y)2=-4x4y2 D. x6÷x=x5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,2017年上海市全社會用于環(huán)境保護的資金約為62800000000元,這個數(shù)用科學記數(shù)法表示為( 。
A. 628×108 B. 62.8×109 C. 6.28×1010 D. 6.28×1011
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點.且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關系.
小王同學探究此問題的方法是,延長FD到點G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,△CBF的面積最大?求出△CBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線y=x+1和x軸上,則點B6的坐標是( )
A.(63,32) B.(64,32) C.(63,31) D.(64,31)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學近5個月的手機數(shù)據(jù)流量如下:60,68,70,66,80(單位:MB),這組數(shù)據(jù)的極差是 MB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com