【題目】⊙o的半徑是13,弦AB∥CD,AB=24,CD=10,則AB與CD的距離是( )
A.7 B.17 C.7或17 D.4
【答案】C.
【解析】
試題分析: ①當(dāng)AB、CD在圓心兩側(cè)時(shí);過O作OE⊥AB交AB于E點(diǎn),過O作OF⊥CD交CD于F點(diǎn),連接OA、OC,如圖所示:∵半徑r=13,弦AB∥CD,且AB=24,CD=10,∴OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一條直線上,∴EF為AB、CD之間的距離,在Rt△OEA中,由勾股定理可得:OE2=OA2﹣AE2,∴OE==5,在Rt△OFC中,由勾股定理可得:OF2=OC2﹣CF2,∴OF==12,∴EF=OE+OF=17,AB與CD的距離為17;
②當(dāng)AB、CD在圓心同側(cè)時(shí);同①可得:OE=5,OF=12;則AB與CD的距離為:OF﹣OE=7;故AB與CD的距離是為7或17.故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)學(xué)習(xí)小組某次測(cè)驗(yàn)成績分別是63,72,70,49,66,81,53,92,69,則這組數(shù)據(jù)的極差是( 。
A. 47 B. 43 C. 34 D. 29
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE.
⑴若∠BAE=40°,求∠C的度數(shù);
⑵若△ABC周長13cm,AC=6cm,求DC長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=45°,AB=BC.
(1)求證:BC是⊙O的切線;
(2)設(shè)陰影部分的面積為a,b,⊙O的面積為S,請(qǐng)寫出S與a,b的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(m﹣1)x2+(m﹣2)x﹣1與x軸交于A、B兩點(diǎn),若m>1,且點(diǎn)A在點(diǎn)B的左側(cè),OA:OB=1:3
(1)試確定拋物線的解析式;
(2)直線y=kx﹣3與拋物線交于M、N兩點(diǎn),若△AMN的內(nèi)心在x軸上,求k的值.
(3)設(shè)(2)中拋物線與y軸的交點(diǎn)為C,過點(diǎn)C作直線l∥x軸,將拋物線在y軸左側(cè)的部分沿直線l翻折,拋物線的其余部分保持不變,得到一個(gè)新圖象,請(qǐng)你結(jié)合新圖象回答:當(dāng)直線y=x+b與新圖象只有一個(gè)公共點(diǎn)P(x0,y0)且y0≤7時(shí),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在a﹣(2b﹣3c)=﹣□中的□內(nèi)應(yīng)填的代數(shù)式為( 。
A. ﹣a﹣2b+3c B. a﹣2b+3c C. ﹣a+2b﹣3c D. a+2b﹣3c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB;
(2)若sin∠ABC=,求tan∠BDC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由一個(gè)兩位數(shù),十位上的數(shù)字比個(gè)位上的數(shù)字大3,把個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào)之后所得新數(shù)與原數(shù)之和是77,這個(gè)兩位數(shù)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com