【題目】如圖,點(diǎn)E為正方形ABCD的邊BC所在直線上的一點(diǎn),連接AE,過點(diǎn)C作CF⊥AE于F,連接BF.
(1)如圖1,當(dāng)點(diǎn)E在CB的延長(zhǎng)線上,且AC=EC時(shí),求證:BF=;
(2)如圖2,當(dāng)點(diǎn)E在線段BC上,且AE平分∠BAC時(shí),求證:AB+BE=AC;
(3)如圖3,當(dāng)點(diǎn)E繼續(xù)往右運(yùn)動(dòng)到BC中點(diǎn)時(shí),過點(diǎn)D作DH⊥AE于H,連接BH.求證:∠BHF=45°.
【答案】見解析
【解析】
試題分析:(1)根據(jù)等腰三角形的性質(zhì)和直角三角形斜邊中線的性質(zhì)即可證得結(jié)論;
(2)作EG⊥AC于G,根據(jù)角平分線的性質(zhì)得出BE=EG,進(jìn)而通過RT△ABE≌RT△AGE得出AG=AB,然后證得△EGC是等腰直角三角形,從而證得EG=GC,即可證得AB+BE=AC;
(3)設(shè)正方形的邊長(zhǎng)為1,則AB=AD=1,BE=EC=,根據(jù)勾股定理求得AE=,然后通過證得△AEB∽△CEF,△ADH∽△EAB,對(duì)應(yīng)邊成比例證得CF=AH=,然后根據(jù)SAS證得△ABH≌△CBF,證得BH=BF,∠ABH=∠CBF,從而證得△HBF是等腰直角三角形,從而證得∠BHF=45°.
(1)證明:如圖1,∵AC=EC,CF⊥AE,
∴AF=EF,
∴BF是RT△ABE的斜邊的中線,
∴BF=AE;
(2)如圖2,作EG⊥AC于G,
∵AE平分∠BAC,AB⊥BE,
∴BE=EG,
在RT△ABE和RT△AGE中
,
∴RT△ABE≌RT△AGE(HL),
∴AG=AB,
∵四邊形ABCD是正方形,
∴∠ACB=45°,
∴∠GEC=45°,
∴∠GEC=∠ACB=45°,
∴EG=GC,
∴AB+BE=AG+GC,
即AB+BE=AC;
(3)如圖3,設(shè)正方形的邊長(zhǎng)為1,則AB=AD=1,
∵點(diǎn)E是BC中點(diǎn),
∴BE=EC=,
∴AE==,
∵∠ABE=∠CFE=90°,∠AEB=∠CEF,
∴△AEB∽△CEF,
∴=,即=,
∴CF=,
∵AD∥BC,
∴∠DAH=∠AEB,
∵∠AHD=∠BEA=90°,
∴△ADH∽△EAB,
∴=,即=,
∴AH=,
∴CF=AH,
在△ABH和△CBF中
∴△ABH≌△CBF(SAS),
∴BH=BF,∠ABH=∠CBF,
∵∠ABH+∠HBE=∠ABE=90°,
∴∠HBF=90°,
∴△HBF是等腰直角三角形,
∴∠BHF=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)|-1|+(—2)3+(7-π)0-()-1;
(2) (-2a)3·(a2)2÷a3
(3) (3a+b-2)(3a-b+2)
(4)10002-1002×998
(5) (x+1)(x2+1)(x4+1)(x-1)
(6) (3a+2)2(3a-2)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)二元碼是由0和1組成的數(shù)字串x1x2…xn(n為正整數(shù)),其中xk(k=1,2,…,n)稱為第k位碼元,如:二元碼01101的第1位碼元為0,第5位碼元為1。
(1)二元碼100100的第4位碼元為__________;
(2)二元碼是通信中常用的碼,但在通信過程中有時(shí)會(huì)發(fā)生碼元錯(cuò)誤(即碼元由0變?yōu)?/span>1,或者由1變?yōu)?/span>0)。已知某種二元碼x1x2…x7的碼元滿足如下校驗(yàn)方程組:
其中運(yùn)算定義為:00=0,11=0,01=1,10=1。
①計(jì)算:0110=___________;
②現(xiàn)已知一個(gè)這種二元碼在通信過程中僅在第k位發(fā)生碼元錯(cuò)誤后變成了0101101,那么利用上述校驗(yàn)方程組可判定k等于__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,然后解答提出的問題:
設(shè)a,b是有理數(shù),且滿足a+b=3﹣2,求ba的值.
解:由題意得(a﹣3)+(b+2)=0,因?yàn)?/span>a,b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),
由于是無理數(shù),所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以ba=(﹣2)3=﹣8.問題:設(shè)x,y都是有理數(shù),且滿足x2﹣2y+y=8+4,求x+y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點(diǎn)F。
(1)依題意補(bǔ)全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請(qǐng)將下面的證明過程補(bǔ)充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE=______________,∠COF=∠COB。
(理由: _____________________________________)
∵點(diǎn)C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠____________。
(理由: ___________________________________)
∴∠ACE=∠COF。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合并同類項(xiàng):
(1)3(4x2-3x+2)-2(1-4x2+x);
(2)15x2-(3y2+7xy)+3(2y2-5x2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班七個(gè)興趣小組人數(shù)分別為4,4,5,x,6,6,7.已知這組數(shù)據(jù)的平均數(shù)是5,則這組數(shù)據(jù)的中位數(shù)是( )
A. 7 B. 6 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算結(jié)果正確的是( 。
A. a4﹒a2=a8 B. (a5)2=a7 C. (a-b)2=a2-b2 D. (ab)2=a2b2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com