(2010•仙桃)如圖,A、B兩地被一大山阻隔,汽車從A地到B須經(jīng)過C地中轉(zhuǎn).為了促進A、B兩地的經(jīng)濟發(fā)展,現(xiàn)計劃開通隧道,使汽車可以直接從A地到B地.已知∠A=30°,∠B=45°,BC=千米.若汽車的平均速度為45千米/時,則隧道開通后,汽車直接從A地到B地需要多長時間?(參考數(shù)據(jù):

【答案】分析:過點C作AB的垂線,根據(jù)三角函數(shù)即可求得AC,AB的長,就可求得汽車行走的時間,從而求解.
解答:解:過點C作CD⊥AB于點D.
在直角△BCD中,BD=CD=BC=15千米;
在直角△ACD中,∠A=30°,
則AC=2CD=30千米,
AD=CD=15≈25.5千米.
∴AB=AD+BD=25.5+15=40.5千米.
則由A到B的時間是40.5÷45≈0.9(小時).
點評:一般三角形的問題可以轉(zhuǎn)化為直角三角形的計算,轉(zhuǎn)化的方法是作高線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標(biāo)為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件的點P的坐標(biāo);若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標(biāo)為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件的點P的坐標(biāo);若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標(biāo)為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

同步練習(xí)冊答案