【題目】如圖,已知在ABC,ABAC,BE,CF都是ABC的高線,PBE上一點,BPAC,QCF延長線上一點,CQAB,連結(jié)APAQ,QP.求證:

(1)AQPA.

(2)APAQ.

【答案】(1)證明見解析(2)證明見解析

【解析】試題分析:(1由已知條件可求出∠ABP=∠QCA,即可根據(jù)SAS證得AQC≌△PAB(SAS),就可以得出AP=AQ;

2根據(jù)全等三角形的性質(zhì),由AQC≌△PAB可得出∠BAP=∠CQA,再由∠CQA+∠FAQ=90°,即可證明.

試題解析:(1)∵BE,CF是△ABC的高線,

BEAC,CFAB,

∴∠ABPBACACQBAC90°,

∴∠ABPACQ.

在△AQC和△PAB,

∴△AQC≌△PAB(SAS)AQPA.

(2)∵△AQC≌△PAB∴∠BAPCQA.

∵∠CQABAQ90°,

∴∠BAPBAQ90°,APAQ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EBC邊上一點,AB⊥BC于點B,DC⊥BC于點C,ABBC,∠A∠CBD,AEBD交于點O有下列結(jié)論:①AEBD;②AE⊥BD;③BECD④△AOB的面積等于四邊形CDOE的面積其中正確的結(jié)論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a0)交x軸于A(1,0),B(5,0)兩點,與y軸交于點C(0,2)

(1)求拋物線的解析式;

(2)若點M為拋物線的頂點,連接BC、CM、BM,求BCM的面積;

(3)連接AC,在x軸上是否存在點P使ACP為等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“故人西辭黃鶴樓,煙花三月下?lián)P州”,據(jù)報道去年揚州旅游總收入近900億元,大部分的旅游收入是靠“皮包骨“的湖泊﹣﹣瘦西湖得來.將數(shù)據(jù)90000000000用科學(xué)記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,ACB90°,AC6,BC8.P從點A出發(fā)沿路徑ACB向終點B運動;點Q從點B出發(fā)沿路徑BCA向終點A運動P和點Q分別以1個單位/秒和3個單位/秒的速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某一時刻,過點PPEl于點E,過點QQFl于點F.問:點P運動多少時間時,PECCFQ全等?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正數(shù)a的平方根為x2x﹣6,則a=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(2)班派出12名同學(xué)參加數(shù)學(xué)競賽,老師以75分為基準(zhǔn),把分數(shù)超過75分的部分記為正數(shù)不足的部分記為負數(shù).評分記錄如下

+15,+20-5,-4-3,+4+6,+2,+3+5,+7-8

1)這12名同學(xué)中最高分和最低分各是多少分?

2)超過基準(zhǔn)分的有多少人?

3)這12名同學(xué)的平均成績是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD=AC,BE=BC.

(1)若∠ACB=96°,求∠DCE的度數(shù).

(2)問:∠DCE與∠A,∠B之間存在怎樣的數(shù)量關(guān)系(直接寫出答案)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)以a,b為直角邊,c為斜邊作兩個全等的Rt△ABERt△FCD拼成如圖1所示的圖形,使B,E,F,C四點在一條直線上(此時E,F重合),可知△ABE △FCD,AEDF,請你證明:;

(2)在(1)中,固定△FCD,再將△ABE沿著BC平移到如圖2的位置(此時B,F重合),請你重新證明:.

查看答案和解析>>

同步練習(xí)冊答案