【題目】“五·一”期間,九年一班同學從學校出發(fā),去距學校6千米的本溪水洞游玩,同學們分為步行和騎自行車兩組,在去水洞的全過程中,騎自行車的同學比步行的同學少用40分鐘,已知騎自行車的速度是步行速度的3倍.
(1)求步行同學每分鐘走多少千米?
(2)如圖是兩組同學前往水洞時的路程y(千米)與時間x(分鐘)的函數圖象.
完成下列填空:
①表示騎車同學的函數圖象是線段__________;
②已知A點坐標(30,0),則B點的坐標為(________).
【答案】AM(50,0)
【解析】
(1)關鍵描述語:“騎自行車的同學比步行的同學少用40分鐘”;等量關系為:步行的同學所用的時間=騎自行車的同學所用的時間+40;
(2)①函數圖象的斜率為騎自行車和步行時的速率,騎自行車的速率快,故斜率大,故AM線段為騎車同學的函數圖象;
②根據題中所的條件,可將線段AM的函數關系式表示出來,從而可將可將B點的坐標求出.
(1)設步行同學每分鐘走千米,則騎自行車同學每分鐘走千米,
根據題意,得:,
,
經檢驗,是原方程的解,
答:步行同學每分鐘走千米;
(2)①騎車同學的速度快,即斜率大,故為線段AM;
②由(1)知,線段AM的斜率為:3x=,
設一次函數關系式為:y=x+b
將點A的坐標(30,0)代入可得:b=9,
∴y=x9.
當y=6時,x=50.
故點B的坐標為(50,0).
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠CEF的度數為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數式表示);
(2)若以AD為直徑的圓經過點C.
①求拋物線的函數關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知:點A(0,0),B(,0),C(0,1)在△ABC內依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…,則第個等邊三角形的邊長等于__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設,.
①如圖2,當點在線段BC上移動,則,之間有怎樣的數量關系?請說明理由;
②當點在直線BC上移動,則,之間有怎樣的數量關系?請直接寫出你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1) 如圖1,在正方形ABCD中,點E,F分別在邊BC,CD上,AE,BF交于點O,∠AOF=90°.求證:BE=CF.
(2) 如圖2,在正方形ABCD中,點E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°, EF=4.求GH的長.
(3) 已知點E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°,EF=4. 直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,求GH的長;
②如圖4,矩形ABCD由n個全等的正方形組成,求GH的長(用n的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一棵樹CD的10m高處的B點有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經過的路程相等,試問這棵樹多高?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com