【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正方形AOCD的頂點(diǎn)A、C分別在y軸和x軸上,點(diǎn)P的坐標(biāo)為(2,0),以點(diǎn)P為圓心,OP的長為半徑向正方形內(nèi)部作一半圓,交線段DF于點(diǎn)F,線段DF的延長線交y軸于點(diǎn)E,DF=DC.
(1)求證:DF是半圓P的切線;
(2)求線段DF所在直線的解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng).
(1)點(diǎn)P到達(dá)終點(diǎn)O的運(yùn)動(dòng)時(shí)間是 s,此時(shí)點(diǎn)Q的運(yùn)動(dòng)距離是 cm;
(2)當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P、Q兩點(diǎn)的距離為 cm;
(3)請你計(jì)算出發(fā)多久時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;
(4)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線y=過點(diǎn)D,問k的值是否會(huì)變化?若會(huì)變化,說明理由;若不會(huì)變化,請求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列等式:,,,將以上三個(gè)等式兩邊分別相加得:
.
(1)觀察發(fā)現(xiàn):__________ .
(2)初步應(yīng)用:利用(1)的結(jié)論,解決以下問題“①把拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之差,即 ;②把拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之和,即 ;
( 3 )定義“”是一種新的運(yùn)算,若,,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個(gè)內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形 OABC 為菱形,對角線 OB、AC 相交于 D 點(diǎn),已知 A點(diǎn)的坐標(biāo)為(10,0),雙曲線 y=( x>0 )經(jīng)過 D 點(diǎn),交 BC 的延長線于 E 點(diǎn),且 OBAC=120(OB>AC),有下列四個(gè)結(jié)論:①雙曲線的解析式為y=(x>0);②E 點(diǎn)的坐標(biāo)是(4,6);③sin∠COA=;④EC=;⑤AC+OB=8.其中正確的結(jié)論有( )
A. 4 個(gè) B. 3 個(gè) C. 2 個(gè) D. 1 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
如圖,在平面直角坐標(biāo)系中,點(diǎn)D的坐標(biāo)是(﹣3,1),點(diǎn)A的坐標(biāo)是(4,3).
(1)點(diǎn)B和點(diǎn)C的坐標(biāo)分別是________、________.
(2)將△ABC平移后使點(diǎn)C與點(diǎn)D重合,點(diǎn)A、B分別與點(diǎn)E、F重合,畫出△DEF.并直接寫出E點(diǎn)的坐標(biāo) ,F點(diǎn)的坐標(biāo) .
(3)若AB上的點(diǎn)M坐標(biāo)為(x,y),則平移后的對應(yīng)點(diǎn)M′的坐標(biāo)為___ _____.
(4)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【操作發(fā)現(xiàn)】如圖 1,△ABC 為等邊三角形,點(diǎn) D 為 AB 邊上的一點(diǎn),∠DCE=30°,將線段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 60°得到線段 CF,連接 AF、EF. 請直接 寫出下列結(jié)果:
① ∠EAF的度數(shù)為__________;
② DE與EF之間的數(shù)量關(guān)系為__________;
【類比探究】如圖 2,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) D 為 AB 邊上的一點(diǎn)∠DCE=45°,將線段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°得到線段 CF,連接 AF、EF.
①則∠EAF的度數(shù)為__________;
② 線段 AE,ED,DB 之間有什么數(shù)量關(guān)系?請說明理由;
【實(shí)際應(yīng)用】如圖 3,△ABC 是一個(gè)三角形的余料.小張同學(xué)量得∠ACB=120°,AC=BC, 他在邊 BC 上取了 D、E 兩點(diǎn),并量得∠BCD=15°、∠DCE=60°,這樣 CD、CE 將△
ABC 分成三個(gè)小三角形,請求△BCD、△DCE、△ACE 這三個(gè)三角形的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝廠計(jì)劃一周生產(chǎn)工藝品2100個(gè),平均每天生產(chǎn)300個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):
(1)寫出該廠星期一生產(chǎn)工藝品的數(shù)量;
(2)本周產(chǎn)量最多的一天比最少的一天多生產(chǎn)多少個(gè)工藝品?
(3)請求出該工藝廠在本周實(shí)際生產(chǎn)工藝品的數(shù)量;
(4)已知該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一個(gè)工藝品可得60元,若超額完成任務(wù),則超過部分每個(gè)另獎(jiǎng)50元,少生產(chǎn)一個(gè)扣80元.試求該工藝廠在這一周應(yīng)付出的工資總額.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com