【題目】小王是新星廠的一名工人,請你閱讀下列信息:

信息一:工人工作時間:每天上午800—1200,下午1400—1800,每月工作25天;

信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關(guān)系見下表:

生產(chǎn)甲種產(chǎn)品數(shù)()

生產(chǎn)乙種產(chǎn)品數(shù)()

所用時間(分鐘)

10

10

350

30

20

850

信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;

信息四:該廠工人每月收入由底薪和計酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請根據(jù)以上信息,解答下列問題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;

(2)20181月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?

【答案】(1)生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20;(2)小王該月最多能得3544元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.

【解析】

(1)根據(jù)圖表列出二元一次方程組即可求解,(2)根據(jù)甲乙生產(chǎn)時間的關(guān)系,表示出生產(chǎn)乙種產(chǎn)品用時,進(jìn)而表示出甲乙生產(chǎn)數(shù)量,可得總利潤關(guān)系式,討論即可求解.

(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分.

由題意得:

解這個方程組得:,

答:生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分.

(2)設(shè)生產(chǎn)甲種產(chǎn)品共用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分.

則生產(chǎn)甲種產(chǎn)品件,生產(chǎn)乙種產(chǎn)品件.

∴w總額=1.5×+2.8×

=0.1x+×2.8

=0.1x+1680-0.14x

=-0.04x+1680,

≥60,得x≥900,

由一次函數(shù)的增減性,當(dāng)x=900w取得最大值,此時w=0.04×900+1680=1644(元),

則小王該月收入最多是1644+1900=3544(元),

此時甲有=60(件),

乙有:=555(件),

答:小王該月最多能得3544元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請解答下列各題:

1)數(shù)軸上表示的兩點之間的距離表示為_______,如果,那么_______

2)若點表示的整數(shù)為,則當(dāng)________時,

3)要使取最小值時,相應(yīng)的的取值范圍是________,最小值是________

4)已知,則的最大值為_______,最小值為_______

5)若,則的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為圓的直徑,為圓上一點,延長線一點,且于點

1)求證:直線為圓的切線;

2)設(shè)與圓交于點的延長線與交于點,

①求證:

②若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀理解:課外興趣小組活動時,老師提出了如下問題:

在△ABC中,AB9,AC5,求BC邊上的中線AD的取值范圍。

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法(如圖1):

①延長ADQ,使得DQAD;

②再連接BQ,把ABAC、2AD集中在△ABQ中;

③利用三角形的三邊關(guān)系可得4<AQ<14,則AD的取值范圍是_____________。

感悟:解題時,條件中若出現(xiàn)“中點”“中線”等條件,可以考慮倍長中線,構(gòu)造全等三角形,把分散的己知條件和所求證的結(jié)論集中到同一個三角形中。

2)請你寫出圖1ACBQ的位置關(guān)系并證明。

3)思考:已知,如圖2,AD是△ABC的中線,ABAE,ACAF,∠BAE=∠FAC90°。試探究線段ADEF的數(shù)量和位置關(guān)系并加以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結(jié)AP并延長APCDF點,連結(jié)CP并延長CPADQ點.給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,對稱軸是直線x=-,有下列結(jié)論:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正確結(jié)論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究

1)在 6 月份的日歷中(如圖 1),任意圈出一列上相鄰的三個數(shù),設(shè)中間的一個數(shù)為 a,則用含 a 的代數(shù)式表示這三個數(shù)(從小到大)分別是________________________________

2)連續(xù)的自然數(shù) 1 2004 按圖中的方式派成一個長方形陣列,用一個正方形框出 16 個數(shù)(如圖2

①圖2中框出的這 16 個數(shù)之和是____________;

②在圖2中,要使一個正方形框出的 16 個數(shù)之和分別等于 839、2000,是否可能?若不可能,試說明理由.若有可能,請求出該正方形框出的 16 個數(shù)中的最小數(shù)與最大數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是直線x=﹣1

1)求mn的值;

2x取什么值時,yx的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象經(jīng)過點A4,1)與點B0,5).

1)在所給的平面直角坐標(biāo)系中畫出它的圖象并求一次函數(shù)的表達(dá)式;

2)若P點為此一次函數(shù)圖象上一點,且SPOB=SAOB,求P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案