【題目】如圖,將ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)至AB′C′(B與B′,C與C′分別是對(duì)應(yīng)頂點(diǎn)),使AB′BC,B′C′分別交AC,BC于點(diǎn)D,E,已知AB=AC=5,BC=6,則DE的長為_____

【答案】

【解析】

根據(jù)等腰三角形的性質(zhì)與勾股定理得到AF=4,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到B'F=1,∠B=∠B',利用三角形函數(shù)求得EF=,則EC=,易得△DEC為直角三角形,然后利用三角形函數(shù)即可得解.

解:如圖,

∵AB=AC=5,AB'⊥BC,

∴BF=CF=BC=3,∠B=∠C,

根據(jù)勾股定理得:AF=4,

∵△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)至△AB'C',

∴AB=AB'=5,∠B=∠B',

∴B'F=1,

∵tan∠B=,

∴tan∠B'=

∴EF=,

∴EC=FC﹣EF=,

∵∠B'+∠BEB'=90°,且∠C=∠B=∠B',∠BEB'=∠CED,

∴∠C+∠DEC=90°,

∵sin∠C=sin∠B,

∴DE=.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,EAB的中點(diǎn),連接DE并延長交CB的延長線于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF

1)求證:△ADE≌△BFE;

2)連接EG,判斷EGDF的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,∠BAC120°,ADBC,且ADAB,∠EDF60°,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F,求證:BEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張三角形紙片ABC,已知∠B=∠Cα,按下列方案用剪刀沿著箭頭方向剪開,所剪下的三角形紙片不一定是全等圖形的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場(chǎng)用32000元購進(jìn)了一批運(yùn)動(dòng)服,上市后很快銷售一空.商場(chǎng)又用68000元緊急購進(jìn)第二批這種運(yùn)動(dòng)服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.

1)該商場(chǎng)兩次共購進(jìn)這種運(yùn)動(dòng)服多少套?

2)若兩批運(yùn)動(dòng)服每套的售價(jià)相同,第二批售完后獲利比第一批售完后獲利多12000元,則每套運(yùn)動(dòng)服的售價(jià)是   元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在x軸的正半軸上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,延長AB交該函數(shù)圖象于另一點(diǎn)C,BC=3AB,點(diǎn)D也在該函數(shù)的圖象上,BD=BC,以BC,BD為邊構(gòu)造CBDE,若點(diǎn)O,B,E在同一條直線上,且CBDE的周長為k,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某建筑商承接一條道路的鋪設(shè)工程,需購置一批大小相同的花崗石板,它的長為160cm將這批花崗石板按如圖所示的兩種方案進(jìn)行切割(不計(jì)損耗,余料不再利用),切割后的M型和N型小花崗石板可拼成如圖所示的正方形(該圖案不重疊無縫隙),圖的道路由若干個(gè)圖的正方形拼接而成(該圖案不重疊無縫隙).

(1)M型小花崗石板的長AB=   cm,寬AC=   cm.

(2)現(xiàn)有110塊花崗石板切割后恰好拼成若干個(gè)圖所示的正方形,并將這些正方形鋪設(shè)成圖的道路,能鋪設(shè)多少米?

(3)現(xiàn)有a張花崗石板,用方案甲切割;b張花崗石板,用方案乙切割,同時(shí)從外地材料公司調(diào)來M型小花崗石板64塊.用完現(xiàn)有的M型和N型小花崗石板恰好能完整拼成如圖的道路圖案,若61≤a≤69,則道路最多能鋪設(shè)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),C(0,3)兩點(diǎn),它的對(duì)稱軸與x軸交于點(diǎn)F,過點(diǎn)C作CE∥x軸交拋物線于另一點(diǎn)E,連結(jié)EF,AC.

(1)求該拋物線的表達(dá)式及點(diǎn)E的坐標(biāo);

(2)在線段EF上任取點(diǎn)P,連結(jié)OP,作點(diǎn)F關(guān)于直線OP的對(duì)稱點(diǎn)G,連結(jié)EG和PG,當(dāng)點(diǎn)G恰好落到y(tǒng)軸上時(shí),求EGP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸,y軸上,連OB,將紙片OABC沿OB折疊,使點(diǎn)A落在A′的位置,若OB=,tanBOC=,則點(diǎn)A′的坐標(biāo)( 。

A. , B. (﹣, C. (﹣, D. (﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案