【題目】我們在學完“平移、軸對稱、旋轉”三種圖形的變化后,可以進行進一步研究,請根據(jù)示例圖形,完成下表.

圖形的變化

示例圖形

與對應線段有關的結論

與對應點有關的結論

平移

AA′=BB′
AA′∥BB′

軸對稱

旋轉

AB=A′B′;對應線段AB和A′B′所在的直線相交所成的角與旋轉角相等或互補.

【答案】AB=A′B′,AB∥A′B′;AB=A′B′;對應線段AB和A′B′所在的直線如果相交,交點在對稱軸l上.;l垂直平分AA′;OA=OA′,∠AOA′=∠BOB′.
【解析】解:①平移的性質:平移前后的對應線段相等且平行.所以與對應線段有關的結論為:AB=A′B′,AB∥A′B′;
②軸對稱的性質:AA′=BB′;對應線段AB和A′B′所在的直線如果相交,交點在對稱軸l上.
③軸對稱的性質:軸對稱圖形對稱軸是任何一對對應點所連線段的垂直平分線.所以與對應點有關的結論為:l垂直平分AA′.
④OA=OA′,∠AOA′=∠BOB′.
所以答案是:①AB=A′B′,AB∥A′B′;②AB=A′B′;對應線段AB和A′B′所在的直線如果相交,交點在對稱軸l上.;③l垂直平分AA′;④OA=OA′,∠AOA′=∠BOB′.
【考點精析】解答此題的關鍵在于理解余角和補角的特征的相關知識,掌握互余、互補是指兩個角的數(shù)量關系,與兩個角的位置無關,以及對平移的性質的理解,了解①經(jīng)過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應點所連的線段平行(或在同一直線上)且相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:|﹣3|+ tan30°﹣ ﹣(2016﹣π)0+( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對應值如表:

x

﹣5

﹣4

﹣3

﹣2

﹣1

0

y

4

0

﹣2

﹣2

0

4

下列說法正確的是( 。
A.拋物線的開口向下
B.當x>﹣3時,y隨x的增大而增大
C.二次函數(shù)的最小值是﹣2
D.拋物線的對稱軸是x=﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隨機地閉合開關S1 , S2 , S3 , S4 , S5中的三個,能夠使燈泡L1 , L2同時發(fā)光的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交⊙O于點F,點F恰好落在 的中點,連接AF并延長與CB的延長線相交于點G,連接OF.

(1)求證:OF= BG;
(2)若AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα= , ,以O為原點,OA所在直線為x軸建立直角坐標系.

(1)求點P的坐標;
(2)水面上升1m,水面寬多少( 取1.41,結果精確到0.1m)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點E、F分別為邊CD、AD的中點,連接AE,CF,求證:△ADE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= 的圖象與直線y=﹣x+b都經(jīng)過點A(1,4),且該直線與x軸的交點為B.

(1)求反比例函數(shù)和直線的解析式;
(2)求△AOB的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+b(b>4)與x軸、y軸分別相交于點A、B,與反比例函數(shù) 的圖象相交于點C、D(點C在點D的左側),⊙O是以CD長為半徑的圓.CE∥x軸,DE∥y軸,CE、DE相交于點E.
(1)△CDE是三角形;點C的坐標為 , 點D的坐標為(用含有b的代數(shù)式表示);
(2)b為何值時,點E在⊙O上?
(3)隨著b取值逐漸增大,直線y=x+b與⊙O有哪些位置關系?求出相應b的取值范圍.

查看答案和解析>>

同步練習冊答案