【題目】已知,在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為邊在AD的上邊作正方形ADEF,連接CF.
(1)觀察猜想:如圖1,當(dāng)點D在線段BC上時,①BC與CF的位置關(guān)系為:;②BC、CD、CF之間的數(shù)量關(guān)系為: .
(2)數(shù)學(xué)思考:如圖2,當(dāng)點D在線段CB的延長線上時,以上①②關(guān)系是否成立,請在后面的橫線上寫出正確的結(jié)論.①BC與CF的位置關(guān)系為:;②BC、CD、CF之間的數(shù)量關(guān)系為: .
(3)如圖3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GD,若已知AB=2 ,CD= BC,請求出DG的長(寫出求解過程).
【答案】
(1)BC⊥CF;CF=BC-CD
(2)BC⊥CF;CF=CD﹣BC
(3)
解:由題意得:∠BAC=∠FAD=90°,∴∠BAD=∠CAF,
在△BAD和△CAF中, ,
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=45°,
∴∠FCB=∠ACF+∠ACB=45°+45°=90°,
∴CF⊥BC,
在Rt△ABC中,AC=AB=2 ,
在Rt△AGC中,∵∠ACF=45°,
∴CG= AC= ×2 =4,
同理BC=4,
CD= BC= ×4=1,
∴在Rt△DCG中,DG= = = .
【解析】(1)證明:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中, ,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴∠BCF=90°,∴BC⊥CF,所以答案是:BC⊥CF;②由①△BAD≌△CAF,∴BD=CF,∵BD=BC﹣CD,∴CF=BC﹣CD,所以答案是:CF=BC﹣CD;
⑵解:①成立,②不成立;理由如下:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠FAC=90°,∠DAF=∠BAF+∠DAB=90°,∴∠BAD=∠CAF,在△BAD和△CAF中, ,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°﹣45°=135°,∴∠ACB+∠FCB=135°,∴∠FCB=90°,∴BC⊥CF,所以答案是:BC⊥CF;②由①△BAD≌△CAF,∴BD=CF,∵BD=CD﹣BC,∴CF=CD﹣BC,所以答案是:CF=CD﹣BC;
【考點精析】根據(jù)題目的已知條件,利用垂線的性質(zhì)和勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握垂線的性質(zhì):1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.
(1)求拋物線的解析式及點D的坐標(biāo);
(2)連接BD,F(xiàn)為拋物線上一動點,當(dāng)∠FAB=∠EDB時,求點F的坐標(biāo);
(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當(dāng)點P在x軸上,且PQ= MN時,求菱形對角線MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OB=3,BC是⊙O的弦,∠ABC的平分線交⊙O于點D,連接OD,若∠BAC=20°,則 的長等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生在家使用電腦的情況(分為“總是、較多、較少、不用”四種情況),隨機(jī)在八、九年級各抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,繪制成部分統(tǒng)計圖如下所示.請根據(jù)圖中信息,回答下列問題:
(1)九年級一共抽查了名學(xué)生,圖中的a= , “總是”對應(yīng)的圓心角為度.
(2)根據(jù)提供的信息,補(bǔ)全條形統(tǒng)計圖.
(3)若該校九年級共有900名學(xué)生,請你統(tǒng)計其中使用電腦情況為“較少”的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點,觀察圖象可知:①當(dāng)x=﹣3或1時,y1=y2;②當(dāng)﹣3<x<0或x>1時,y1>y2;即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
艾斯柯同學(xué)類比以上知識的研究方法,用函數(shù)與方程的思想對不等式的解法進(jìn)行了探究,請將他下面的②③④補(bǔ)充完整:
①當(dāng)x=0時,原不等式不成立:當(dāng)x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;當(dāng)x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1< .
②構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= 在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標(biāo)系中直接畫出拋物線y3=x2+4x﹣1(可不列表);
③利用圖象,確定交點橫坐標(biāo)
觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
④借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D做勻速運動,那么△ABP的面積S與點P運動的路程x之間的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,
求證:四邊形ABCD是四邊形.
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按嘉淇的想法寫出證明;
(3)用文字?jǐn)⑹鏊C命題的逆命題為平行四邊形兩組對邊分別相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com