【題目】已知點D,E,F分別是△ABC的邊AB,AC,BC上的點,DE∥BC,DF∥AC.
(1)如圖1,點G是線段FD延長線上一點,連接EG,∠CEG的平分線EM交AB于點M,交FD于點N.則∠A,∠AME,∠CEG之間存在怎樣的數(shù)量關(guān)系?請寫出證明過程;
(2)如圖2,在(1)的條件下,若EG平分∠AED,∠AME=35°,且∠EDF﹣∠A=30°,求∠C的度數(shù).
【答案】(1)∠CEG=2∠A+2∠AME,證明詳見解析;(2)68°.
【解析】
(1)利用外角定理即可求解;
(2)由平角AEC得:∠CEM+∠MED+∠DEA=180°,即:2α+γ+α+γ=180°;利用∠EDF﹣∠A=30°,得:2α﹣∠A=30°;利用∠CEM=∠AME=∠A,即可求解.
解:(1)∠CEM=∠A+∠AME,
而∠CEG=2∠CEM=2∠A+2∠AME;
(2)EG平分∠AED,設(shè):∠GEA=∠GED=α,
DF∥AC,則∠EDF=2α,
由平角AEC得:∠CEM+∠MED+∠DEA=180°,
即:2α+γ+α+γ=180°…①,
∠EDF﹣∠A=30°,則2α﹣∠A=30°…②,
∠CEM=∠AME=∠A,
即:35°+∠A=α+γ…③,
聯(lián)立①②③并解得:α=34°,
∠C=2α=68°.
科目:初中數(shù)學 來源: 題型:
【題目】隨著科技與經(jīng)濟的發(fā)展,中國廉價勞動力的優(yōu)勢開始逐漸消失,而作為新興領(lǐng)域的機器人產(chǎn)業(yè)則迅速崛起,機器人自動化線的市場也越來越大,并且逐漸成為自動化生產(chǎn)線的主要方式,某化工廠要在規(guī)定時間內(nèi)搬運1200千元化工原料.現(xiàn)有A,B兩種機器人可供選擇,已知A型機器人比B型機器人每小時多搬運30千克,A型機器人搬運900千克所用的時間與B型機器人搬運600千克所用的時間相等.
(1)兩種機器人每小時分別搬運多少化工原料?
(2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,A型機器人又有了新的搬運任務(wù),但必須保證這批化工原料在11小時內(nèi)全部搬運完畢.求:A型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,則AC的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.
(1)求證:AD∥BC;
(2)CD與EF平行嗎?寫出證明過程;
(3)若DF平分∠ADC,求證:CE⊥DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩位同學在長方形的場地ABCD上繞著四周跑步,甲沿著A-D-C-B-A方向循環(huán)跑步,同時乙沿著B-C-D-A-B方向循環(huán)跑步,AB=30米,BC=50米,若甲速度為2米/秒,乙速度3米/秒.
(1)設(shè)經(jīng)過的時間為t秒,則用含t的代數(shù)式表示甲的路程為 米;
(2)當甲、乙兩人第一次相遇時,求所經(jīng)過的時間t為多少秒?
(3)若甲改為沿著A-B-C-D-A的方向循環(huán)跑步,而乙仍按原來的方向跑步,兩人的速度不變,求經(jīng)過多少秒,乙追上甲?
(4)在(3)的條件下,當乙第一次追上甲后繼續(xù)跑步,則最少再經(jīng)過秒乙又追上甲,這時兩人所處的位置在點P;直接寫出的值,在圖中標出點P,不要求書寫過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+c的圖象經(jīng)過點A(﹣4,3),B(﹣2,6),點A關(guān)于拋物線對稱軸的對稱點為點C,點P是拋物線對稱軸右側(cè)圖象上的一點,點G(0,﹣1).
(1)求出點C坐標及拋物線的解析式;
(2)若以A,C,P,G為頂點的四邊形面積等于30時,求點P的坐標;
(3)若Q為線段AC上一動點,過點Q平行于y軸的直線與過點G平行于x軸的直線交于點M,將△QGM沿QG翻折得到△QGN,當點N在坐標軸上時,求Q點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】再讀教材:
寬與長的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計,下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個正方形,然后把紙片展平.
第二步,如圖②.把這個正方形折成兩個相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點D折出 DE,使 DE⊥ND,則圖④中就會出現(xiàn)黃金矩形,
問題解決:
(1)圖③中AB=________(保留根號);
(2)如圖③,判斷四邊形 BADQ的形狀,并說明理由;
(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.
(4)結(jié)合圖④.請在矩形 BCDE中添加一條線段,設(shè)計一個新的黃金矩形,用字母表示出來,并寫出它的長和寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結(jié)DC.
(1)圖2中的全等三角形是_______________,并給予證明(說明:結(jié)論中不得含有未標識的字母);
(2)指出線段DC和線段BE的關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com