【題目】如圖,在矩形ABCD中,AB8,BC6,EAD上一點(diǎn),將△BAE繞點(diǎn)B順時針旋轉(zhuǎn)得到△BAE′,當(dāng)點(diǎn)A′,E′分別落在BDCD上時,則DE的長為_____

【答案】

【解析】

根據(jù)勾股定理可求BD=10,由旋轉(zhuǎn)的性質(zhì)可得AE=A'E,AB=A'B=8,∠BA'E'=90°,由BCD∽△E'A'D,可得,可得A'E'=AE=,即可求DE的長.

∵四邊形ABCD是矩形

∴∠DAB=∠C90°,ADBC6,ABCD8,

BD10,

∵將BAE繞點(diǎn)B順時針旋轉(zhuǎn)得到BAE,

AEA'E,ABA'B8,∠BA'E'90°

A'DBDBA'2,

∵∠BDC=∠BDC,∠DA'E'=∠C90°,

∴△BCD∽△E'A'D

A'E'AE

DEADAE

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們把關(guān)于某一點(diǎn)成中心對稱的兩條拋物線叫孿生拋物線;(1)已知拋物線Ly=﹣x2+4x軸交于AB兩點(diǎn)(AB的左側(cè)),與y軸交于C點(diǎn),求L關(guān)于坐標(biāo)原點(diǎn)O0,0)的孿生拋物線W;(2)點(diǎn)N為坐標(biāo)平面內(nèi)一點(diǎn),且△BCN是以BC為斜邊的等腰直角三角形,在x軸是否存在一點(diǎn)Mm,0),使拋物線L關(guān)于點(diǎn)M孿生拋物線過點(diǎn)N,如果存在,求出M點(diǎn)坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的對稱軸為直線.若關(guān)于的一元二次方程的范圍內(nèi)有實數(shù)根,則的取值范圍是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D

1)求拋物線的函數(shù)解析式;

2)點(diǎn)P為線段BC上一個動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個動點(diǎn),AQCP,連接PQ,設(shè)CPmCPQ的面積為S

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在參加了成都市教育質(zhì)量綜合評價學(xué)業(yè)素養(yǎng)測試后,隨機(jī)抽取八年級部分學(xué)生,針對發(fā)展水平四個維度:A﹣閱讀素養(yǎng)、B﹣數(shù)學(xué)素養(yǎng)、C﹣科學(xué)素養(yǎng)、D﹣人文素養(yǎng),開展了“你最需要提升的學(xué)業(yè)素養(yǎng)”問卷調(diào)查(每名學(xué)生必選且只能選擇一項).現(xiàn)將調(diào)查的結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全兩幅統(tǒng)計圖;

2)求扇形統(tǒng)計圖中的選項D對應(yīng)的扇形圓心角的度數(shù);

3)該校八年級共有學(xué)生400人,請估計全年級選擇選項B的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A10)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點(diǎn),求APC的面積的最大值及此時點(diǎn)P的坐標(biāo);

3)在對稱軸上是否存在一點(diǎn)M,使ANM的周長最。舸嬖,請求出M點(diǎn)的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.

1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,點(diǎn),若,則的半徑為(

A.B.5C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸分別交于兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的表達(dá)式及頂點(diǎn)D的坐標(biāo);

2)點(diǎn)F是線段AD上一個動點(diǎn).

①如圖1,設(shè),當(dāng)k為何值時,.

②如圖2,以A,FO為頂點(diǎn)的三角形是否與相似?若相似,求出點(diǎn)F的坐標(biāo);若不相似,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案