【題目】如圖,已知AB是⊙O的直徑,點C,D在⊙O上,且AB=5,BC=3.
(1) 求sin∠BAC的值;
(2) 如果OE⊥AC, 垂足為E,求OE的長;
(3) 求tan∠ADC的值.(結(jié)果保留根號)
【答案】(1)(2)(3)
【解析】
(1)根據(jù)圓周角定理可得到∠ACB是直角,再根據(jù)三角函數(shù)求解即可;
(2)首先根據(jù)垂徑定理得出E是AC中點.再根據(jù)中位線定理求解即可;
(3)根據(jù)同弧或等弧所對的圓周角相等可得∠ADC=∠ABC,在RtACB中求出tan∠ABC即可.
解:(1)∵AB是⊙O直徑
∴∠ACB=90°
∵AB=5,BC=3
∴sin∠BAC==;
(2)∵OE⊥AC,O是⊙O的圓心
∴E是AC中點.
又∵O是AB的中點.
∴OE=BC=;
(3)在RtACB中,∠ACB=90°
∵AB=5,BC=3
∴AC==4
∵∠ADC=∠ABC
∴tan∠ADC=tan∠ABC=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦AC=2,∠ABC=30°,∠ACB的平分線交⊙O于點D,求:
(1)BC、AD的長;
(2)圖中兩陰影部分面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-x+b與雙曲線y=(x>0)交于A、B兩點,與x軸、y軸分別交干E、F兩點,AC⊥x軸于點C,BD⊥y軸于點D,當(dāng)b= _____時,△ACE、△BDF與△ABO面積的和等于△EFO面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在左邊托盤A(固定)中放置一個生物,在右邊托盤B(可左右移動)中放置一定重量的砝碼,可使得儀器左右平衡,改變托盤B與支撐點M的跳高,記錄相應(yīng)的托盤B中的砝碼質(zhì)量,得到下表:
托盤B與點M的距離x(cm) | 10 | 15 | 20 | 25 | 30 |
托盤B中的砝碼質(zhì)量y(g) | 30 | 20 | 15 | 12 | 10 |
(1)把上表中(x,y)的各級對應(yīng)值作為點的坐標(biāo),在如圖所示的平面直角坐標(biāo)系中描出其余的點,并用一條光滑的曲線連接起來,觀察所畫的圖象,猜想y與x的函數(shù)關(guān)系,求出該函數(shù)關(guān)系式.
(2)當(dāng)托盤B向左移動(不能超過點M)時,應(yīng)往托盤B中添加砝碼還是減少砝碼?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,污水處理公司為某樓房建一座周長為30米的三級污水處理池,平面圖為矩形,米,中間兩條隔墻分別為、,池墻的厚度不考慮.
(1)用含的代數(shù)式表示外圍墻的長度;
(2)如果設(shè)計時要求矩形水池恰好被隔墻分成三個全等的矩形,且它們均與矩形相似,求此時的長;
(3)如果設(shè)計時要求矩形水池恰好被隔墻分成三個全等的正方形.已知池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價每米300元,池底建造的單價為每平方米100元.試計算此項工程的總造價.(結(jié)果精確到1元)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是____海里.(結(jié)果精確到個位,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1 , 依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018 , 如果點A的坐標(biāo)為(,0),那么點B2018的坐標(biāo)為( )
A. (1,1) B. (0,) C. (﹣1,1) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 所示,一個長方體的長、寬、高分別是 ,,,有一只螞蟻從點 出發(fā)沿棱爬行,每條棱不允許重復(fù),則螞蟻回到點 時,最多爬行多遠?并把螞蟻所爬行的路線用字母按順序表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com