【題目】如圖,AB為⊙O的直徑,弦AC=2,∠ABC=30°,∠ACB的平分線交⊙O于點(diǎn)D,求:
(1)BC、AD的長;
(2)圖中兩陰影部分面積的和.
【答案】(1)2;(2).
【解析】
(1)根據(jù)直徑得出∠ACB=∠ADB=90°,根據(jù)勾股定理求出BC,根據(jù)圓周角定理求出AD=BD,求出AD即可;
(2)根據(jù)三角形的面積公式,求出△AOC和△AOD的面積,再求出S扇形COD,即可求出答案.
解:(1)∵AB是直徑,
∴∠ACB=∠ADB=90°(直徑所對的圓周角是直角),
在Rt△ABC中,∠ABC=30°,AC=2,
∴AB=4,
∴BC=,
∵∠ACB的平分線交⊙O于點(diǎn)D,
∴∠DCA=∠BCD
∴,
∴AD=BD,
∴在Rt△ABD中,AD=BD=AB=2;
(2)連接OC,OD,
∵∠ABC=30°,
∴∠AOC=∠2∠ABC=60°,
∵OA=OB,
∴S△AOC=S△ABC=××AC×BC=××2×2=,
由(1)得∠AOD=90°,
∴∠COD=150°,
S△AOD=×AO×OD=×22=2,
∴S陰影=S扇形COD﹣S△AOC﹣S△AOD=﹣﹣2=π﹣﹣2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E為⊙O的直徑AB上一個動點(diǎn),點(diǎn)C、D在下半圓AB上(不含A、B兩點(diǎn)),且∠CED=∠OED=60°,連OC、OD
(1)求證:∠C=∠D;
(2)若⊙O的半徑為r,請直接寫出CE+ED的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2m,當(dāng)水面下降1m時(shí),水面的寬度為( )
A.3 B.2 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+2ax+c與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)當(dāng)a>0時(shí),如圖所示,若點(diǎn)D是第三象限方拋物線上的動點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫出自變量m的取值范圍;請問當(dāng)m為何值時(shí),S有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC外接圓上的點(diǎn),且B,D位于AC的兩側(cè),DE⊥AB,垂足為E,DE的延長線交此圓于點(diǎn)F.BG⊥AD,垂足為G,BG交DE于點(diǎn)H,DC,FB的延長線交于點(diǎn)P,且PC=PB.
(1)求證:∠BAD=∠PCB;
(2)求證:BG∥CD;
(3)設(shè)△ABC外接圓的圓心為O,若AB=DH,∠COD=23°,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個由小正方體組成的幾何體的左視圖和俯視圖.
該幾何體最少需要幾塊小正方體?最多可以有幾塊小正方體?
請畫出該幾何體的所有可能的主視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且AB=5,BC=3.
(1) 求sin∠BAC的值;
(2) 如果OE⊥AC, 垂足為E,求OE的長;
(3) 求tan∠ADC的值.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,線段AE的延長線交△ABC的外接圓于點(diǎn)D.
(1)求證:ED=BD;
(2)若∠BAC=90°,△ABC的外接圓的直徑是6,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com