【題目】如圖,已知△ABC,且∠ACB90°.

1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):

以點A為圓心,BC邊的長為半徑作A;

以點B為頂點,在AB邊的下方作∠ABD=∠BAC

2)請判斷直線BDA的位置關(guān)系,并說明理由.

【答案】1)詳見解析;(2)直線BDA相切,理由詳見解析.

【解析】

1)①以點A為圓心,以BC的長度為半徑畫圓即可;

②以點A為圓心,以任意長為半徑畫弧,與邊ABAC相交于兩點E、F,再以點B為圓心,以同等長度為半徑畫弧,與AB相交于一點M,再以點M為圓心,以EF長度為半徑畫弧,與前弧相交于點N,作射線BN即可得到∠ABD;

2)根據(jù)內(nèi)錯角相等,兩直線平行可得ACBD,再根據(jù)平行線間的距離相等可得點ABD的距離等于BC的長度,然后根據(jù)直線與圓的位置關(guān)系判斷直線BD與⊙A相切.

解:(1)如圖所示;

2)直線BD與⊙A相切.

∵∠ABD=∠BAC

ACBD,

∵∠ACB90°,⊙A的半徑等于BC,

∴點A到直線BD的距離等于BC,

∴直線BD與⊙A相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)在△ABC中,ABAC,點PBC所在直線上的任一點,過點PPDABPEAC,垂足分別為D、E,過點CCFAB,垂足為F.當(dāng)PBC邊上時(如圖1),求證:PD+PECF

證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PECF.(不要證明)

(變式探究)(1)當(dāng)點PCB延長線上時,其余條件不變(如圖3),試探索PD、PECF之間的數(shù)量關(guān)系并說明理由;

請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:

(結(jié)論運用)(2)如圖4,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點PPGBE、PHBC,垂足分別為GH,若AD16CF6,求PG+PH的值.

(遷移拓展)(3)在直角坐標(biāo)系中,直線l1y-x+8與直線l2y=﹣2x+8相交于點A,直線l1、l2x軸分別交于點B、點C.點P是直線l2上一個動點,若點P到直線l1的距離為2.求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,在等邊中,點邊上一動點,于點,將繞點順時針旋轉(zhuǎn)得到,連接.則的數(shù)量關(guān)系是_____,的度數(shù)為______

(2)拓展探究:如圖2,在中,,點邊上一動點,于點,當(dāng)∠ADF=∠ACF=90°時,求的值.

(3)解決問題:如圖3,在中,,點的延長線上一點,過點的延長線于點,直接寫出當(dāng)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A60°,AC2,DAB邊上一個動點(不與點A、B重合),EBC邊上一點,且∠CDE30°.設(shè)ADxBEy,則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca,bc是常數(shù),a0)經(jīng)過點A10)和點B0,﹣2),且頂點在第三象限,記mab+c,則m的取值范圍是( 。

A. 1m0B. 2m0C. 4m<﹣2D. 4m0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yk≠0)的圖象經(jīng)過A,B兩點,過點AACx軸,垂足為C,過點BBDx軸,垂足為D,連接AO,連接BOAC于點E,若OCCD,四邊形BDCE的面積為2,則k的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,點D是弧AC的中點,∠COB60°,過點CCEAD,交AD的延長線于點E

1)求證:CE為⊙O的切線;

2)若CE,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品1件和乙商品3件共需240元;購進甲商品2件和乙商品1件共需130元.

1)求甲、乙兩種商品每件的進價分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知反比例函數(shù)y的圖象經(jīng)過點A(1,)

(1)試確定此反比例函數(shù)的解析式;

(2)O是坐標(biāo)原點,將線OAO點順時針旋轉(zhuǎn)30°得到線段OB,判斷點B是否在此反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案