【題目】在平面直角坐標系中,已知反比例函數(shù)y=的圖象經過點A(1,).
(1)試確定此反比例函數(shù)的解析式;
(2)點O是坐標原點,將線OA繞O點順時針旋轉30°得到線段OB,判斷點B是否在此反比例函數(shù)的圖象上,并說明理由.
【答案】(1)y=;(2)在,理由見解析
【解析】
(1)把點A坐標代入反比例函數(shù)解析式,求出k值即可;(2)過點A作x軸的垂線交x軸于點C.過點B作x軸的垂線交x軸于點D.利用勾股定理可求出OA的長,進而可得∠OAC=30°,∠AOC=60°,由旋轉的性質可得∠AOB=30°,即可求出∠BOD的度數(shù),進而可得BD、OD的長,即可得B點坐標,把B點橫坐標代入解析式即可得答案.
(1)把A(1,)代入y=,得k=1×=,
∴反比例函數(shù)的解析式為y=.
(2)過點A作x軸的垂線交x軸于點C.
在Rt△AOC中,OC=1,AC=.
由勾股定理,得OA==2,
∴∠OAC=30°,∠AOC=60°.
過點B作x軸的垂線交x軸于點D.
由題意,∠AOB=30°,OB=OA=2,
∴∠BOD=30°,
在Rt△BOD中,得BD=1,OD=,
∴B點坐標為(,1).
將x=代入y=中,得y=1,
∴點B(,1)在反比例函數(shù)y=的圖象上.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為.
(1)分別求出線段AP、CB的長;
(2)如果OE=5,求證:DE是⊙O的切線;
(3)如果tan∠E=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為半圓內一點,為圓心,直徑長為,,,將繞圓心逆時針旋轉至,點在上,則邊掃過區(qū)域(圖中陰影部分)的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣4,1),B(﹣2,3),C(﹣1,2).
(1)畫出△ABC關于原點O成中心對稱的△A′B′C′,點A′,B′,C′分別是點A,B,C的對應點.
(2)求過點B′的反比例函數(shù)解析式.
(3)判斷A′B′的中點P是否在(2)的函數(shù)圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了九年級學生對A,B,C,D,E五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據調查結果繪制了如下的兩個統(tǒng)計圖.
請根據圖中所提供的信息,完成下列問題:
(1)本次被調查的學生的人數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為 ;
(4)若該中學有4000名學生,請估計該校喜愛C,D兩類校本課程的學生共有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.
(1)當⊙O的半徑r=2時,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點”是 ;
(2)若點E(4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;
(3)當⊙O的半徑r=2時,直線y=- x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在圓O上,BE⊥CD垂足為E,CB平分∠ABE,連接BC
(1)求證:CD為⊙O的切線;
(2)若cos∠CAB=,CE=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=75°,∠C=45°,BC=4,點M是AC邊上的動點,點M關于直線AB、BC的對稱點分別為P、Q,則線段PQ長的取值范圍是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com