【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問題:
(1)[﹣4.5]= , <3.5>=
(2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是
(3)已知x,y滿足方程組 ,求x,y的取值范圍.

【答案】
(1)﹣5;4
(2)2≤x<3;﹣2≤y<﹣1
(3)解:解方程組得: ,

∴x,y的取值范圍分別為﹣1≤x<0,2≤y<3.


【解析】解:(1)由題意得,[﹣4.5]=﹣5,<3.5>=4;
2)∵[x]=2,
∴x的取值范圍是2≤x<3;
∵<y>=﹣1,
∴y的取值范圍是﹣2≤y<﹣1;
(1)根據(jù)題目所給信息求解;(2)根據(jù)[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根據(jù)<a>表示大于a的最小整數(shù),可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是菱形ABCD對角線CA的延長線上任意一點(diǎn),以線段AE為邊作一個菱形AEFG,且菱形AEFG∽菱形ABCD,連接EB,GD.
(1)求證:EB=GD;
(2)若∠DAB=60°,AB=2,AG= ,求GD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,順次連接邊長為1的正方形ABCD四邊的中點(diǎn),得到四邊形A1B1C1D1 , 然后順次連接四邊形A1B1C1D1四邊的中點(diǎn),得到四邊形A2B2C2D2 , 再順次連接四邊形A2B2C2D2四邊的中點(diǎn),得到四邊形A3B3C3D3 , …,按此方法得到的四邊形A8B8C8D8的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,CEAD于點(diǎn)E,CB=CE,點(diǎn)FCD邊上的一點(diǎn),CB=CF,連接BFCE于點(diǎn)G.

(1)若,CF=,求CG的長;

(2)求證:AB=ED+CG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點(diǎn)D在y軸上,點(diǎn)E在x軸上,在△ABC中,點(diǎn)A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):

(1)將△ODE繞O點(diǎn)按逆時針方向旋轉(zhuǎn)90°得到△OMN(其中點(diǎn)D的對應(yīng)點(diǎn)為點(diǎn)M,點(diǎn)E的對應(yīng)點(diǎn)為點(diǎn)N),畫出△OMN;
(2)將△ABC沿x軸向右平移得到△A′B′C′(其中點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為點(diǎn)A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
(3)求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次交換,如此這樣,連續(xù)經(jīng)過2016次變換后,正方形ABCD的對角線交點(diǎn)M的坐標(biāo)變?yōu)?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答下列問題:
(1)已知一元二次方程ax2+bx+c=0(a≠0)有兩根x1 , x2(b2﹣4ac≥0).用求根公式寫出x1 , x2 , 并證明x1+x2=﹣ ,x1x 2=
(2)若一元二次方程x2+x﹣1=0的兩根為m,n,運(yùn)用(1)中的結(jié)論,求 + 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(3,0),B(0,4),則點(diǎn)B100的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案