【題目】解答下列問(wèn)題:
(1)已知一元二次方程ax2+bx+c=0(a≠0)有兩根x1 , x2(b2﹣4ac≥0).用求根公式寫出x1 , x2 , 并證明x1+x2=﹣ ,x1x 2=
(2)若一元二次方程x2+x﹣1=0的兩根為m,n,運(yùn)用(1)中的結(jié)論,求 + 的值.

【答案】
(1)證明:∵x= ,

∴x1= ,x2=

∴x1+x2= + = =﹣

x1x2= = = = =


(2)解:∵一元二次方程x2+x﹣1=0的兩根為m,n,

∴m+n=﹣1,mn=﹣1,

+ = = = =﹣3


【解析】(1)利用求根公式找出x1 , x2 , 將其相加(相乘)整理后即可得出結(jié)論;(2)根據(jù)根與系數(shù)的關(guān)系即可得出m+n=﹣1、mn=﹣1,將 + 邊形為 ,再代入數(shù)據(jù)即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了根與系數(shù)的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題提出】 學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.

【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) , 可以知道Rt△ABC≌Rt△DEF. 第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF. 第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 , 則△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(7,0),C(0,4),點(diǎn)D的坐標(biāo)為(5,0),點(diǎn)PBC邊上運(yùn)動(dòng). 當(dāng)ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問(wèn)題:
(1)[﹣4.5]= , <3.5>=
(2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是
(3)已知x,y滿足方程組 ,求x,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某零件如圖所示,圖紙要求∠A=90°,B=32°,C=21°,當(dāng)檢驗(yàn)員量得∠BDC=145°,就斷定這個(gè)零件不合格,你能說(shuō)出其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過(guò)點(diǎn)AABx軸,垂足為點(diǎn)A,過(guò)點(diǎn)CCBy軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.

(1)線段AB,BC,AC的長(zhǎng)分別為AB=   ,BC=   ,AC=   

(2)折疊圖1中的ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開(kāi),折痕DEAB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.

請(qǐng)從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長(zhǎng);

②在y軸上,是否存在點(diǎn)P,使得APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

B:①求線段DE的長(zhǎng);

②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),直線y= x+4的圖象與該二次函數(shù)的圖象交于點(diǎn)A(m,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.

(1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A,B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象的交于點(diǎn)D,與x軸交于點(diǎn)E,設(shè)線段PD長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點(diǎn)P.使得以點(diǎn)P,E,B為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角三角形中,,直線過(guò)點(diǎn).

(1)當(dāng)時(shí),如圖1,分別過(guò)點(diǎn)直線于點(diǎn)直線于點(diǎn).是否全等,并說(shuō)明理由;

(2)當(dāng),時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接、.點(diǎn)上一點(diǎn),點(diǎn)上一點(diǎn),分別過(guò)點(diǎn)、直線于點(diǎn),直線于點(diǎn),點(diǎn)點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.

①當(dāng)為等腰直角三角形時(shí),求的值;

②當(dāng)全等時(shí),求的值.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于點(diǎn)E,∠E=30°,交AB于點(diǎn)D,連接AE,則SADC:SADE的比值為(
A.
B.
C.
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案