【題目】如圖,在平面直角坐標(biāo)系中,已知的三個頂點的坐標(biāo)分別為

1)若經(jīng)過平移后得到,已知點的坐標(biāo)為,寫出頂點的坐標(biāo),畫出

2)若關(guān)于原點成中心對稱圖形,寫出的各頂點的坐標(biāo);

3)將繞著點按順時針方向旋轉(zhuǎn)得到,寫出的各頂點的坐標(biāo),并畫出

【答案】1)圖見解析,A12,2),B13,2);(2A23,5),B22,1),C21,3);(3)圖見解析;A353),B312),C33,1

【解析】

1)利用點C和點C1的坐標(biāo)變化得到平移的方向與距離,然后利用此平移規(guī)律寫出頂點A1,B1的坐標(biāo),畫出圖形;
2)根據(jù)關(guān)于原點對稱的點的坐標(biāo)特征求解;
3)利用網(wǎng)格和旋轉(zhuǎn)的性質(zhì)畫出△A3B3C3,然后寫出△A3B3C3的各頂點的坐標(biāo).

解:(1)如圖,△A1B1C1為所作,
∵點C13)平移后的對應(yīng)點C1的坐標(biāo)為(4,0),
∴△ABC先向右平移5個單位,再向下平移3個單位得到△A1B1C1,
A122),B13,2);
2)因為△ABC關(guān)于原點O成中心對稱圖形,
所以A23,5),B22,1),C21,3);
3)如圖,△A3B3C3為所作,

A35,3),B31,2),C331);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元,三年后如果備件多余,每個以元()回收.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得到如下頻數(shù)分布直方圖:

表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).

1)以100臺機器為樣本,請利用畫樹狀圖或列表的方法估計不超過19的概率;

2)以這100臺機器在購買易損零件上所需費用的平均數(shù)為決策依據(jù),在之中選其一,當(dāng)為何值時,選比較劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的一個頂點O是平面直角坐標(biāo)系的原點,頂點A,C分別在y軸和x軸上,P為邊OC上的一個動點,且PQ⊥BP,PQ=BP,當(dāng)點P從點C運動到點O時,可知點Q始終在某函數(shù)圖象上運動,則其函數(shù)圖象是(

A.線段B.圓弧

C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(感知)如圖①,正方形中,點邊上,平分.若我們分別延長,交于點,則易證.(不需要證明)

(探究)如圖②,在矩形中,點邊的中點,點邊上,平分.求證:

(應(yīng)用)在(探究)的條件下,若,,直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,函數(shù)(x>0)的圖象與直線l1:交于點A,與直線l2x=k交于點B.直線l1l2交于點C

(1) 當(dāng)點A的橫坐標(biāo)為1時,則此時k的值為 _______;

(2) 橫、縱坐標(biāo)都是整數(shù)的點叫做整點 記函數(shù)(x>0) 的圖像在點A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)W

①當(dāng)k=3時,結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點個數(shù)是_________

②若區(qū)域W內(nèi)恰有1個整點,結(jié)合函數(shù)圖象,直接寫出k的取值范圍:___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標(biāo)分別為(﹣1,0)、(0,﹣3).

(1)求拋物線的函數(shù)解析式;

(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標(biāo);

(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市初中學(xué)生課外閱讀情況,調(diào)查小組對該市這學(xué)期初中學(xué)生閱讀課外書籍的冊數(shù)進行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次抽樣調(diào)查的樣本容量是  ;

(2)補全條形統(tǒng)計圖;

(3)該市共有12000名初中生,估計該市初中學(xué)生這學(xué)期課外閱讀超過2冊的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知,拋物線(a0)的頂點為A(s,t)(其中s0) .

(1)若拋物線經(jīng)過(2,2)和(-3,37)兩點,且s=3.

①求拋物線的解析式;

②若n>3, 設(shè)點M(),N()在拋物線上,比較的大小關(guān)系,并說明理由;

(2)若a=2,c=-2,直線與拋物線的交于點P和點Q,點P的橫坐標(biāo)為h,點Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;

(3)若點A在拋物線上,且2≤s<3時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段OA=2,OP=1,將線段OP繞點O任意旋轉(zhuǎn)時,線段AP的長度也隨之改變,則下列結(jié)論:

AP的最小值是1,最大值是4;

當(dāng)AP=2時,△APO是等腰三角形;

當(dāng)AP=1時,△APO是等腰三角形;

當(dāng)AP時,△APO是直角三角形;

當(dāng)AP時,△APO是直角三角形.

其中正確的是(  )

A. ①④⑤ B. ②③⑤ C. ②④⑤ D. ③④⑤

查看答案和解析>>

同步練習(xí)冊答案