【題目】如圖,在直角坐標(biāo)系中,有菱形點的坐標(biāo)是,雙曲線經(jīng)過點,且,則的值為(

A. 40 B. 48 C. 64 D. 80

【答案】B

【解析】

CCD垂直于x軸,交x軸于點D,由菱形的面積等于對角線乘積的一半,根據(jù)已知OBAC的乘積求出菱形OABC的面積,而菱形的面積可以由OA乘以CD來求,根據(jù)OA的長求出CD的長,在中,利用勾股定理求出OD的長,確定出C的坐標(biāo),代入反比例解析式中即可求出k的值.

CCD垂直于x軸,交x軸于點D,

∵四邊形OABC是菱形,OBAC為兩條對角線,且OBAC=160,

∴菱形OABC的面積為80,即OACD=80,

OA=AC=10,

CD=8,

RtOCD中,

OC=10,CD=8,

C(6,8),

k=6×8=48.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線,直線,相交于點,,分別與軸相交于點.

(1)求點P的坐標(biāo).

(2),求x的取值范圍.

(3)x軸上的一個動點,過x軸的垂線分別交于點,當(dāng)EF=3時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(l)觀察猜想:如圖①,點 、 、 在同一條直線上, , ,則是否全等?__________(填是或否),線段之間的數(shù)量關(guān)系為__________

2)問題解決:如圖②,在中, , , ,以 為直角邊向外作等腰 ,連接,求的長。

3)拓展延伸:如圖③,在四邊形中, , , ,,于點.求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司引進,兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續(xù)搬運小時,種機器人于某日時開始搬運,過了小時,種機器人也開始搬運,如圖,線段表示種機器人的搬運量(千克)與時間(時)的函數(shù)圖像,線段表示種機器人的搬運量(千克)與時間(時)的函數(shù)圖像,根據(jù)圖像提供的信息,解答下列問題:

(1)求關(guān)于的函數(shù)解析式;

(2)如果、兩種機器人連續(xù)搬運個小時,那么種機器人比種機器人多搬運了多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:;②;③;④;⑤的解為,其中正確的有(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由6個長為2,寬為1的小矩形組成的大矩形網(wǎng)格,小矩形的頂點稱為這個矩形網(wǎng)格的格點,由格點構(gòu)成的幾何圖形稱為格點圖形(如:連接2個格點,得到一條格點線段;連接3個格點,得到一個格點三角形;),請按要求作圖(標(biāo)出所畫圖形的頂點字母).

1)畫出4種不同于示例的平行格點線段;

2)畫出4種不同的成軸對稱的格點三角形,并標(biāo)出其對稱軸所在線段;

3)畫出1個格點正方形,并簡要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,分別為的中點,延長至點,使,連結(jié)

1)求證:

2)猜想:的面積與四邊形的面積的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.

(1)若商場預(yù)計進貨款為3500元,求A型、B型節(jié)能燈各購進多少盞?

根據(jù)題意,先填寫下表,再完成本問解答:

型號

A

B

購進數(shù)量(盞)

x

_____

購買費用(元)

_____

_____

(2)若商場規(guī)定B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,應(yīng)怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過A(-1,0)、B(4,5)三點.

(1)求此二次函數(shù)的解析式;

(2)當(dāng)x為何值時,yx的增大而減?

(3)當(dāng)x為何值時,y0?

查看答案和解析>>

同步練習(xí)冊答案