【題目】某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算器,其銷售量y(萬個(gè))與銷售價(jià)格x(元/個(gè)) 的變化如下表:同時(shí),銷售過程中的其他開支(不含進(jìn)價(jià))總計(jì)40萬元.
銷售價(jià)格x(元/個(gè)) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個(gè)) | … | 5 | 4 | 3 | 2 | … |
(1)觀察并分析表中的數(shù)據(jù),用所學(xué)過的函數(shù)知識(shí),直接寫出y與 x的函數(shù)解析式;
(2)求出該公司銷售這種計(jì)算器的凈得利潤z(萬元)與銷售價(jià)格 x(元/個(gè)) 的函數(shù)解析式,銷售價(jià)格定為多少元時(shí)凈得利潤最大,最大值是多少?
(3)該公司要求凈得利潤不能低于40萬元,請(qǐng)你結(jié)合函數(shù)圖象求出銷售價(jià)格 x(元/個(gè)) 的取值范圍,若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為多少元 ?
【答案】(1);(2)50;(3)40.
【解析】分析:(1)根據(jù)數(shù)據(jù)得出y與x是一次函數(shù)關(guān)系,進(jìn)而利用待定系數(shù)法求一次函數(shù)解析式;
(2)根據(jù)z=(x-20)y-40得出z與x的函數(shù)關(guān)系式,求出即可;
(3)首先求出40=-(x-50)2+50時(shí)x的值,進(jìn)而得出x(元/個(gè))的取值范圍.
詳解:(1)根據(jù)表格中數(shù)據(jù)可得出:y與x是一次函數(shù)關(guān)系,
設(shè)解析式為:y=ax+b,
則,
解得:,
故函數(shù)解析式為:y=-x+8;
(2)z =(x-20)y-40 = =,
故當(dāng)銷售單價(jià)定為50元/個(gè)時(shí)凈得利潤最大,最大值為50萬元.
(3)當(dāng)凈得利潤為40萬元時(shí),即 ,
解得x1=40,x2=60
通過觀察函數(shù)的圖象(如圖所示),
可知按照公司要求使凈得利潤不低于40萬元,則銷售價(jià)格的取值范圍為40≤x≤60.
而y與x的函數(shù)關(guān)系式為.
∵<0 ,∴y隨x的增大而減。
若還需考慮銷售量y(萬個(gè))盡可能大,故銷售價(jià)格應(yīng)定為40元/個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商城經(jīng)銷一款新產(chǎn)品,該產(chǎn)品的進(jìn)價(jià)6元/件,售價(jià)為9元/件.工作人員對(duì)30天銷售情況進(jìn)行跟蹤記錄并繪制成圖象,圖中的折線OAB表示日銷售量(件)與銷售時(shí)間(天)之間的函數(shù)關(guān)系.
(1)第18天的日銷售量是 件
(2)求與之間的函數(shù)關(guān)系式,并寫出的取值范圍
(3)日銷售利潤不低于900元的天數(shù)共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC=6,BD=8,M、N分別是BC、CD上的動(dòng)點(diǎn),P是線段BD上的一個(gè)動(dòng)點(diǎn),則PM+PN的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育老師統(tǒng)計(jì)了七年級(jí)甲、乙兩個(gè)班女生的身高情況,并繪制了如下不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解決下列問題:
(1)求甲、乙兩個(gè)班共有女生多少人?
(2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,一幢居民樓OC臨近山坡AP,山坡AP的坡度為i=1:,小亮在距山坡坡腳A處測得樓頂C 的仰角為60°,當(dāng)從A 處沿坡面行走10米到達(dá)P處時(shí),測得樓頂C的仰角剛好為 45°,點(diǎn) O,A,B 在同一直線上,求該居民樓的高度.(結(jié)果保留整數(shù),≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到 △A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長線上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC 繞點(diǎn) B 按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長度的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是( , ),對(duì)稱軸是 ;
(2)如圖1,已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)如圖,在第二問的基礎(chǔ)上,在拋物線上有一點(diǎn)C(x,y),連接AC、OC、BC、PC,當(dāng)△OAC的面積等于△BCP的面積時(shí),求C的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD折疊,使頂點(diǎn)D恰好落在AB邊上的點(diǎn)M處,折痕為AN,有以下四個(gè)結(jié)論①MN∥BC;②MN=AM;③四邊形MNCB是矩形;④四邊形MADN是菱形,以上結(jié)論中,你認(rèn)為正確的有_____________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)著說點(diǎn)理:補(bǔ)全證明過程:
如圖,已知,,垂足分別為,,,試證明:.請(qǐng)補(bǔ)充證明過程,并在括號(hào)內(nèi)填上相應(yīng)的理由.
證明:∵,(已知)
∴(___________________),
∴(___________________),
∴________(___________________).
又∵(已知),
∴(___________________),
∴________(___________________),
∴(___________________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com