精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點A是射線yx≥0)上一點,過點AABx軸于點B,以AB為邊在其右側作正方形ABCD,過點A的雙曲線yCD邊于點E,則的值為_____

【答案】

【解析】

設點A的橫坐標為mm0),則點B的坐標為(m,0),把xm代入yx得到點A的坐標,結合正方形的性質,得到點C,點D和點E的橫坐標,把點A的坐標代入反比例函數y,得到關于mk的值,把點E的橫坐標代入反比例函數的解析式,得到點E的縱坐標,求出線段DE和線段EC的長度,即可得到答案.

解:設點A的橫坐標為mm0),則點B的坐標為(m,0),

xm代入yx得:ym

則點A的坐標為:(mm),線段AB的長度為m,點D的縱坐標為m

∵點A在反比例函數y上,

km2,

即反比例函數的解析式為:y,

∵四邊形ABCD為正方形,

∴四邊形的邊長為m,

C,點D和點E的橫坐標為m+mm

xm代入y得:

ym,

即點E的縱坐標為m,

ECmDEmmm

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點EF分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關系?請說明理由;

(3)設AEm

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于平面直角坐標系中的動點和圖形,給出如下定義:如果為圖形上一個動點,,兩點間距離的最大值為,,兩點間距離的最小值為,我們把的值叫點和圖形間的和距離,記作,圖形.

1)如圖,正方形的中心為點.

①點到線段和距離,線段=______

②設該正方形與軸交于點,點在線段上,,正方形=7,求點的坐標.

2)如圖2,在(1)的條件下,過,兩點作射線,連接,點是射線上的一個動點,如果,線段,直接寫出點橫坐標取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,點是對角線,的交點,,.點為線段上一點,且滿足,過點于點,交于點

1)若,求;

2)求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某單位需采購一批商品,購買甲商品10件和乙商品15件需資金350,而購買甲商品15件和乙商品10件需要資金375元.

求甲、乙商品每件各多少元?

本次計劃采購甲、乙商品共30,計劃資金不超過460,

最多可采購甲商品多少件?

若要求購買乙商品的數量不超過甲商品數量的,請給出所有購買方案,并求出該單位購買這批商品最少要用多少資金.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線的圖象經過點C(0,-2),頂點D的坐標為(1),與軸交于AB兩點.

(1)求拋物線的解析式.

(2)連接AC,E為直線AC上一點,當△AOC∽△AEB時,求點E的坐標和的值.

3)點F0,)是軸上一動點,當為何值時,的值最小.并求出這個最小值.

4)點C關于軸的對稱點為H,當取最小值時,在拋物線的對稱軸上是否存在點Q,使△QHF是直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CD為⊙O的直徑,AB,AC為弦,且∠ADC=DAB+ACD,ABCDE點.

1)求證:AB=AC

2DF為切線,若DE=2,CE=10,求cosADF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】端午節(jié)前,小明爸爸去超市購買了大小、形狀、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此時從盒中隨機取出火腿粽子的概率為;媽媽從盒中取出火腿粽子3只、豆沙粽子7只送給爺爺和奶奶后,這時隨機取出火腿粽子的概率為

1)請你用所學知識計算:爸爸買的火腿粽子和豆沙粽子各有多少只;

2)若小明一次從盒內剩余粽子中任取2只,問恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或樹狀圖計算)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一次函數y=﹣x+my2x+n的圖象都經過A(﹣40),且與y軸分別交于B、C兩點,則ABC的面積為( 。

A.48B.36C.24D.18

查看答案和解析>>

同步練習冊答案