【題目】我們知道,與三角形各邊都相切的圓叫做三角形的內切圓,則三角形可以稱為圓的外切三角形.如圖1,的三邊分別相切于點叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊分別相切于點則四邊形叫做的外切四邊形.

1)如圖2,試探究圓外切四邊形的兩組對邊之間的數(shù)量關系,猜想: (橫線上填“>”,“<”“=”)

2)利用圖2證明你的猜想(寫出已知,求證,證明過程);

3)用文字敘述上面證明的結論: ;

4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.

【答案】1=;(2)答案見解析;(3)圓外切四邊形的對邊之和相等;(4410;12;6

【解析】

1)根據(jù)圓外切四邊形的定義猜想得出結論;
2)根據(jù)切線長定理即可得出結論;
3)由(2)可得出答案;
4)根據(jù)圓外切四邊形的性質求出第四邊,利用周長建立方程求解即可得出結論.

解:(1)∵⊙O與四邊形ABCD的邊AB,BCCD,DA分別相切于點EF,G,H,
∴猜想AB+CD=AD+BC,
故答案為:=

已知:四邊形的四邊分別與相切于點

求證:

證明:相切,

同理:

由(2)可知:圓外切四邊形的對邊和相等.
故答案為:圓外切四邊形的對邊和相等;

:相鄰的三條邊的比為,

設此三邊為

根據(jù)圓外切四邊形的性質得:第四邊的長為:

圓外切四邊形的周長為,

解得

此四邊形的四邊長分別為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如今很多初中生喜歡購頭飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此某班數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調查,大致可分為四種:A.白開水,B.瓶裝礦泉水,C.碳酸飲料,D.非碳酸飲料.根據(jù)統(tǒng)計結果繪制如下兩個統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,解答下列問題

1)這個班級有多少名同學?并補全條形統(tǒng)計圖;

2)若該班同學每人每天只飲用一種飲品(每種僅限一瓶,價格如下表),則該班同學每天用于飲品的人均花費是多少元?

飲品名稱

白開水

瓶裝礦泉水

碳酸飲料

非碳酸飲料

平均價格(元/瓶)

0

2

3

4

3)為了養(yǎng)成良好的生活習慣,班主任決定在飲用白開水的5名班委干部(其中有兩位班長記為AB,其余三位記為CD,E)中隨機抽取2名班委干部作良好習慣監(jiān)督員,請用列表法或畫樹狀圖的方法求出恰好抽到2名班長的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的頂點,軸的正半軸上,頂點在直線位于第一象限的圖像上,反比例函數(shù)的圖像經過點,交于點,

1)如果,求點的坐標;

2)連接,當時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為2,點邊上的一點,以為直徑在正方形內作半圓,將沿著翻折,點恰好落在半圓上的點處,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,是直角三角形,,,點,點,點,點在第二象限,點.

(1)如圖①,求點坐標及的大。

(2)將點逆時針旋轉得到,點,的對應點分別為點,,的面積.

①如圖②,當點落在邊上時,求的值;

②求的取值范圍(直接寫出結果即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園音樂之聲“結束后,王老師整理了所有參賽選手的比賽成績(單位:分),繪制成如下頻數(shù)直方圖和扇形統(tǒng)計圖:

1)求本次比賽參賽選手總人數(shù),并補全頻數(shù)直方圖;

2)求扇形統(tǒng)計圖中扇形E的圓心角度數(shù);

3)成績在E區(qū)域的選手中,男生比女生多一人,從中隨機選取兩人,求恰好選中兩名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解本校學生平均每天的課外學習時間情況,隨機抽取部分學生進行問卷調查,并將調查結果分為A,BC,D四個等級,設學習時間為t(小時),At1,B1t1.5,C1.5t2,Dt2,根據(jù)調查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中信息解答下列問題:

1)本次抽樣調查共抽取了____名學生,并將條形統(tǒng)計圖補充完整;

2)本次抽樣調查中,學習時間的中位數(shù)落在____等級內;

3)表示B等級的扇形圓心角α的度數(shù)是_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑AC是弦,∠BAC的平分線AD交⊙O于點DDEACAC的延長線于點E,連接OEOEAD于點F

1)求證:DE是⊙O的切線;

2)若,求的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A、Bx軸的正半軸上,反比例函數(shù)y(k0)在第一象限內的圖象經過點D,交BC于點E.若AB4,CE2BE,tanAOD,則k的值_____

查看答案和解析>>

同步練習冊答案