【題目】如圖1,都是邊長為1的等邊三角形.

四邊形ABCD是菱形嗎?為什么?

如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?

移動(dòng)過程中,四邊形有可能是矩形嗎?如果是,請求出點(diǎn)B移動(dòng)的距離寫出過程;如果不是,請說明理由3供操作時(shí)使用

【答案】1)四邊形ABCD是菱形 …………1

證明方法不唯一(略),符合題意即可給分。 …………2

2)四邊形ABC1D1是平行四邊形。

理由:∵∠=∠=60°

∴AB∥

∵AB=

四邊形AB是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)。

…………6

3)四邊形AB有可能是矩形。

此時(shí),=30°,=90°,="1"

=2,

=1,

=1,

即點(diǎn)B移動(dòng)的距離是1…………10

【解析】

1)根據(jù)四邊形四個(gè)邊都相等得出結(jié)論;

2)利用AB平行且相等得出結(jié)論;

3)利用=30°得出B點(diǎn)移動(dòng)的距離。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀以下內(nèi)容:

已知實(shí)數(shù)x,y滿足x+y=2,且求k的值.

三位同學(xué)分別提出了以下三種不同的解題思路:

甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.

乙同學(xué):先將方程組中的兩個(gè)方程相加,再求k的值.

丙同學(xué):先解方程組,再求k的值.

(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對你選擇的思路進(jìn)行簡要評價(jià).

(評價(jià)參考建議:基于觀察到題目的什么特征設(shè)計(jì)的相應(yīng)思路,如何操作才能實(shí)現(xiàn)這些思路、運(yùn)算的簡潔性,以及你依此可以總結(jié)什么解題策略等等)

請先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點(diǎn)B為旋轉(zhuǎn)中心,將ABC沿逆時(shí)針方向旋轉(zhuǎn)90°得到ABC′,請畫出變換后的圖形;

2求點(diǎn)A和點(diǎn)A′之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB兩地相距200km,一列火車從B地出發(fā)沿BC方向以的速度行駛,在行駛過程中,這列火車離A地的路程與行駛時(shí)間之間的函數(shù)關(guān)系式是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=16,O為AB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)O,B重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧 于點(diǎn)P,Q,且點(diǎn)P,Q在AB異側(cè),連接OP.
(1)求證:AP=BQ;
(2)當(dāng)BQ=4 時(shí),求 的長(結(jié)果保留π);
(3)若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導(dǎo)致了第一次數(shù)學(xué)危機(jī), 是無理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個(gè)正整數(shù)).于是( 2=( 2=2,所以,q2=2p2 . 于是q2是偶數(shù),進(jìn)而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個(gè)正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是(
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學(xué)歸納法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是定圓O的內(nèi)接三角形,AD為△ABC的高線,AE平分∠BAC交⊙O于E,交BC于G,連OE交BC于F,連OA,在下列結(jié)論中,①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④ 為常量.其中正確的有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校興趣小組對網(wǎng)上吐糟較為頻繁的“醫(yī)患關(guān)系”產(chǎn)生了興趣,利用節(jié)假日在某社區(qū)開展了“造成醫(yī)患關(guān)系緊張的原因”的問卷調(diào)查.

造成醫(yī)患關(guān)系緊張的原因(單選)
A.藥價(jià)高
B.檢測項(xiàng)目太多且收費(fèi)太高
C.住院報(bào)銷比例低
D.醫(yī)療費(fèi)與個(gè)人收入不相稱
E.其他

根據(jù)調(diào)查結(jié)果繪制出了如下兩幅尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的總?cè)藬?shù)為人;
(2)在扇形統(tǒng)計(jì)圖中,“A”所在扇形的圓心角的度數(shù)為
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市有1000萬人,請你估計(jì)選D的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m。設(shè)AD的長為xm,DC的長為ym。

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

同步練習(xí)冊答案