【題目】如圖,在Rt△ABC中,∠ABC = 90°,BC = 1,AC =.
(1)以點(diǎn)B為旋轉(zhuǎn)中心,將△ABC沿逆時針方向旋轉(zhuǎn)90°得到△A′BC′,請畫出變換后的圖形;
(2)求點(diǎn)A和點(diǎn)A′之間的距離.
【答案】(1)圖形見解析(2)
【解析】
試題分析:(1)根據(jù)題意按要求逐步畫圖即可;
(2)連接AA’,然后根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理可求解.
試題解析:(1)按要求畫圖,如圖所示.
(2)連接A A′.
∵在Rt△ABC中,∠ABC=90°,BC=1,AC=,
∴由勾股定理得AB=2.
∵以點(diǎn)B為旋轉(zhuǎn)中心,將△ABC沿逆時針方向旋轉(zhuǎn)90°得到△A′BC′,
∴A′B=AB=2.
∵在Rt△ABA′中,∠ABA′=90°,A′B=AB=2,
∴由勾股定理得AA′=
∴點(diǎn)A和點(diǎn)A′之間的距離是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.如:如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,則A、兩點(diǎn)間的距離AB=|﹣2﹣8|=10,線段AB的中點(diǎn)C表示的數(shù)為=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度向左勻速運(yùn)動.設(shè)運(yùn)動時間為t秒(t>0).
(1)用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ,點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時,P、Q兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時,PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的六條對角線又圍成一個正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OABC的三個頂點(diǎn)A、B、C在以O(shè)為圓心的半圓上,過點(diǎn)C作CD⊥AB,分別交AB、AO的延長線于點(diǎn)D、E,AE交半圓O于點(diǎn)F,連接CF.
(1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;
(2)①求證:CF=OC; ②若半圓O的半徑為12,求陰影部分的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因式分解:(1)﹣2+12a﹣18a (2)(x+4)-16x
(3)(x-2x)+2(x-2x)+1 (4)-28n+42m -14m n
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程
已知a、b、c為△ABC為三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列問題:
(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的序號________.
(2)錯誤原因?yàn)?/span>________.
(3)本題正確結(jié)論是什么,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,和都是邊長為1的等邊三角形.
四邊形ABCD是菱形嗎?為什么?
如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?
在移動過程中,四邊形有可能是矩形嗎?如果是,請求出點(diǎn)B移動的距離寫出過程;如果不是,請說明理由圖3供操作時使用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn)A、B在x軸上,AB⊥BC,AO=OB=2,BC=3
(1)寫出點(diǎn)A、B、C的坐標(biāo).
(2)如圖②,過點(diǎn)B作BD∥AC交y軸于點(diǎn)D,求∠CAB+∠BDO的大。
(3)如圖③,在圖②中,作AE、DE分別平分∠CAB、∠ODB,求∠AED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com