【題目】我們知道,多項(xiàng)式的因式分解就是將一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式.通過因式分解,我們常常將一個(gè)次數(shù)比較高的多項(xiàng)式轉(zhuǎn)化成幾個(gè)次數(shù)較低的整式的積,來達(dá)到降次化簡的目的.這個(gè)思想可以引領(lǐng)我們解決很多相對(duì)復(fù)雜的代數(shù)問題.

例如:方程就可以這樣來解:

解:原方程可化為:

所以或者

解方程得:

所以原方程的解:,

根據(jù)你的理解,結(jié)合所學(xué)知識(shí),解決以下問題:

1)解方程:;

2)已知的三邊為4、xy,請(qǐng)你判斷代數(shù)式的值的符號(hào).

【答案】(1);(2)代數(shù)式的值的符號(hào)為正號(hào).

【解析】

1)移項(xiàng)后利用平方差公式分解因式,可得兩個(gè)一元一次方程,解出即可.

2)將代數(shù)式變形后,根據(jù)三角形三邊關(guān)系得出即可判斷符號(hào).

解:(1)原方程可化為:,

,

,

所以或者,

解方程得:,

所以原方程的解為:

2

的三邊為4、x、y

,

,

即代數(shù)式的值的符號(hào)為正號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,∠B=30°,以A為圓心、任意長為半徑畫弧分別交ABAC于點(diǎn)MN,再分別以M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,給出下列說法:①DM=DN;②∠ADC=60°;③點(diǎn)DAB的中垂線上;④SDAC:SABC=1:3,其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(m+n+1)x+m(n≥0)的兩個(gè)實(shí)數(shù)根為α、β,且α≤β.

(1)試用含α、β的代數(shù)式表示m和n;

(2)求證:α≤1≤β;

(3)若點(diǎn)P(α,β)在ABC的三條邊上運(yùn)動(dòng),且ABC頂點(diǎn)的坐標(biāo)分別為A(1,2)、B(,1)、C(1,1),問是否存在點(diǎn)P,使m+n=?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動(dòng)點(diǎn),P是線段CN上一點(diǎn),過點(diǎn)P分別作PQ∥OA交OB于點(diǎn)Q,PM∥OB交OA于點(diǎn)M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當(dāng)點(diǎn)N在邊OB上運(yùn)動(dòng)時(shí),四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請(qǐng)說明理由.

②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個(gè)家電廠家在廣告中都聲稱,他們的某種電子產(chǎn)品在正常情況下的使用壽命都是年,經(jīng)質(zhì)量檢測部門對(duì)這三家銷售的產(chǎn)品的使用壽命進(jìn)行跟蹤調(diào)查,統(tǒng)計(jì)結(jié)果如下:(單位:年)

甲廠:,,,,,,,,

乙廠:,,,,,,,

丙廠:,,,,,,,

請(qǐng)回答下列問題:

分別求出以上三組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

這三個(gè)廠家的銷售廣告分別利用了哪一種表示集中趨勢的特征數(shù);

如果你是顧客,宜選購哪家工廠的產(chǎn)品?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,PAC邊上一動(dòng)點(diǎn),由AC運(yùn)動(dòng)(與A、C不重合),QCB延長線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由BCB延長線方向運(yùn)動(dòng)(Q不與B重合),過PPE⊥ABE,連接PQABD.

(1)AE=1時(shí),求AP的長;

(2)當(dāng)∠BQD=30°時(shí),求AP的長;

(3)在運(yùn)動(dòng)過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在對(duì)邊不相等的四邊形中,若四邊形的兩條對(duì)角線互相垂直,那么順次連結(jié)四邊形各邊中點(diǎn)得到的四邊形是( )

A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn),點(diǎn)的縱坐標(biāo)為,軸于點(diǎn),連接

求反比例函數(shù)的解析式;

的面積;

若點(diǎn)是反比例函數(shù)圖象上的一點(diǎn),且滿足的面積是的面積的倍,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,上一點(diǎn),平分,,.

1)求證:

2)如圖(2),若,連接為邊上一點(diǎn),滿足,連接. ①求的度數(shù);

②若平分,試說明:平分.

查看答案和解析>>

同步練習(xí)冊(cè)答案