【題目】(1)已知x-1,求x2+3x-1的值;

(2)若|x-4|++(z+27)2=0,求的值

(3)已知,求的值.

【答案】(1)1;(2)3;(3)a±a±2.

【解析】

1)直接將已知數(shù)據(jù)代入求出即可;2由于|x-4|++(z+27)2=0,根據(jù)絕對值、平方、算術(shù)平方根等非負(fù)數(shù)的性質(zhì)即可求出xy、z的值、然后即可解決問題;(3)

一個數(shù)的算術(shù)平方根等于它本身的只有0,1,令a230或1,從而求出答案.

1)將x1代入原式可得:原式=(1231)-12213311;(2)∵|x4|++(z2720,∴x-4=0,y+8=0,z+27=0,∴x=4,y=-8,z=-27,將三個數(shù)代入原式得:原式==2-2+3=3;(3),令a230或1,解得:a±a±2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC相交于點F.
(1)求證:FD=DC;
(2)若AE=8,DE=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,現(xiàn)有兩個動點P、Q分別從B、D兩點同時出發(fā),點P以每秒2cm的速度沿BC向終點C移動,點Q以每秒1cm的速度沿DA向終點A移動,線段PQ與BD相交于點E,過E作EF∥BC交CD于點F,射線QF交BC的延長線于點H,設(shè)動點P、Q移動的時間為t(單位:秒,0<t<10).
(1)當(dāng)t為何值時,四邊形PCDQ為平行四邊形?
(2)在P、Q移動的過程中,線段PH的長是否發(fā)生改變?如果不變,求出線段PH的長;如果改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品用了160元.
(1)求A,B兩種商品每件各是多少元?
(2)如果小亮準(zhǔn)備購買A,B兩種商品共10件,總費用不超過350元,但不低于300元,問有幾種購買方案,哪種方案費用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1) (2-3; (2) ()2+2×

(3) ; (4) (-2-4;

(5)(-1)(+1)-(-)2+|1-|-(π-2)0

(6).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算:
(2)化簡:(a+3)2+a(4﹣a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2.善于思考的小明進行了以下探索:設(shè)ab=(mn)2(其中a,b,m,n均為整數(shù)),則有abm2+2n2+2mn,∴am2+2n2,b=2mn.這樣小明就找到了一種把類似ab的式子化為平方式的方法.請你仿照小明的方法解決下列問題:

(1)當(dāng)a,bmn均為正整數(shù)時,若ab=(mn)2,用含mn的式子分別表示a,b,得a______________,b________;

(2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:

________________=(________+________)2;

(3)a+4=(mn)2,且a,m,n均為正整數(shù),求a的值.

(4)試化簡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次知識競賽共有20道題,每一題答對得5分,答錯或不答都扣3分.
(1)小明考了68分,那么小明答對了多少問題?
(2)小亮獲得二等獎(70分~90分),請你算算小亮答對了幾道題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,C=90°,AC=3,BC=4分別以AB、AC、BC為邊在AB的同側(cè)作正方形ABEF、ACPQ、BDMC,四塊陰影部分的面積分別為S1、S2、S3、S4則S1+S2+S3+S4等于( )

A14 B16 C18 D20

查看答案和解析>>

同步練習(xí)冊答案