【題目】現(xiàn)有A,B兩種商品,買2件A商品和1件B商品用了90元,買3件A商品和2件B商品用了160元.
(1)求A,B兩種商品每件各是多少元?
(2)如果小亮準(zhǔn)備購(gòu)買A,B兩種商品共10件,總費(fèi)用不超過350元,但不低于300元,問有幾種購(gòu)買方案,哪種方案費(fèi)用最低?

【答案】
(1)解:設(shè)A商品每件x元,B商品每件y元,

依題意,得 ,

解得

答:A商品每件20元,B商品每件50元


(2)解:設(shè)小亮準(zhǔn)備購(gòu)買A商品a件,則購(gòu)買B商品(10﹣a)件

解得5≤a≤6

根據(jù)題意,a的值應(yīng)為整數(shù),所以a=5或a=6.

方案一:當(dāng)a=5時(shí),購(gòu)買費(fèi)用為20×5+50×(10﹣5)=350元;

方案二:當(dāng)a=6時(shí),購(gòu)買費(fèi)用為20×6+50×(10﹣6)=320元;

∵350>320

∴購(gòu)買A商品6件,B商品4件的費(fèi)用最低.

答:有兩種購(gòu)買方案,方案一:購(gòu)買A商品5件,B商品5件;方案二:購(gòu)買A商品6件,B商品4件,其中方案二費(fèi)用最低


【解析】(1)設(shè)A商品每件x元,B商品每件y元,根據(jù)關(guān)系式列出二元一次方程組.(2)設(shè)小亮準(zhǔn)備購(gòu)買A商品a件,則購(gòu)買B商品(10﹣a)件,根據(jù)關(guān)系式列出二元一次不等式方程組.求解再比較兩種方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DAB的中點(diǎn),ECD的中點(diǎn), 過點(diǎn)CCF//ABAE的延長(zhǎng)線于點(diǎn)F,連接BF

(1) 求證:DBCF

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E是邊AD上任意一點(diǎn),BE的垂直平分線FG交對(duì)角AC于點(diǎn)F.求證:(1)BFDF;(2)BFFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算: +( 0+|﹣1|;
(2)先化簡(jiǎn),再求值:(x+2)2+x(2﹣x),其中x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,AP垂直∠ABC的平分線BP于點(diǎn)P.ABC的面積為32cm2,BP=6cm,APB的面積是APC的面積的3AP=________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知x-1,求x2+3x-1的值;

(2)若|x-4|++(z+27)2=0,求的值

(3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A﹣B﹣C﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

(1)若點(diǎn)PBC,且滿足PA=PB,求此時(shí)t的值

(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點(diǎn)H.
(1)判斷線段DE、FG的位置關(guān)系,并說(shuō)明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案