【題目】如圖,點(diǎn)E是矩形ABCD邊AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),過點(diǎn)E作EF⊥DE交BC于點(diǎn)F,連接DF,已知AB=4cm,AD=2cm,設(shè)A,E兩點(diǎn)間的距離為xcm,△DEF面積為ycm2.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點(diǎn)、畫圖、測量、分析,得到了x與y的幾組值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF面積最大時(shí),AE的長度為 cm.
【答案】(1)0≤x<4;(2)3.8,4.0;(3)見解析;(4)0,2.
【解析】
(1)利用點(diǎn)E在線段AB上,即可得出結(jié)論;
(2)先判斷出△ADE∽△BEF,得出,進(jìn)而表示出BF=,再取x=1和x=2求出y的即可;
(3)利用畫函數(shù)圖象的方法即可得出結(jié)論;
(4)由圖象可知,即可得出結(jié)論.
(1)∵點(diǎn)E在AB上,
∴0≤x<4,
故答案為:0≤x<4;
(2)∵四邊形ABCD是矩形,
∴BC=AD=2,CD=AB=4,∠A=∠B=90°,
∴∠ADE+∠AED=90°,
∵EF⊥DE,
∴∠AED+∠BEF=90°,
∴∠ADE=∠BEF,
∵∠A=∠B=90°,
∴△ADE∽△BEF,
∴,
∵AE=x,
∴BE=AB﹣AE=4﹣x,
∴,
∴BF=,
當(dāng)x=1時(shí),BF=,
∴CF=BC﹣BF=2﹣=,
y=S矩形ABCD﹣S△ADE﹣S△BEF﹣S△CDF=8﹣×2×1﹣×3×﹣×4×=3.75≈3.8,
當(dāng)x=2時(shí),BF=2,
∴CF=BC﹣BF=0,此時(shí),點(diǎn)F和點(diǎn)C重合,
y=S矩形ABCD﹣S△ADE﹣S△BEF=8﹣×2×2﹣×2×2=4.0
故答案為:3.8,4.0
(3)描點(diǎn),連線,畫出如圖所示的圖象,
(4)由圖象可知,當(dāng)x=0或2時(shí),△DEF面積最大,
即:當(dāng)△DEF面積最大時(shí),AE=0或2,
故答案為0,2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.以為直徑的與交于點(diǎn),與交于點(diǎn),點(diǎn)在邊的延長線上,且.
(1)試說明是的切線;
(2)過點(diǎn)作,垂足為.若,,求的半徑;
(3)連接,設(shè)的面積為,的面積為,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線交于A、B兩點(diǎn),其橫坐標(biāo)分別為1和5,則不等式k1x<+b的解集是 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切于點(diǎn)M,P、Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長的最小值是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)在拋物線的對稱軸上存在一點(diǎn)P,使得PA+PC的值最小,求此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)D是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C、B不重合)過點(diǎn)D作DF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連接BD,直線BC把△BDF的面積分成兩部分,使,請求出點(diǎn)D的坐標(biāo);
(4)若M為拋物線對稱軸上一動(dòng)點(diǎn),使得△MBC為直角三角形,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在△ABC中,AB=AC,BD是AC邊上的中線,AB=13,BC=10,
(1)求△ABC的面積;
(2)求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四川是聞名天下的“熊貓之鄉(xiāng)”,每年到大熊貓基地游玩的游客絡(luò)繹不絕,大學(xué)生小張加入創(chuàng)業(yè)項(xiàng)目,項(xiàng)目幫助她在基地附近租店賣創(chuàng)意熊貓紀(jì)念品.已知某款熊貓紀(jì)念物成本為30元/件,當(dāng)售價(jià)為45元/件時(shí),每天銷售250件,售價(jià)每上漲1元,銷量下降10件.
(1)求每天的銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)若每天該熊貓紀(jì)念物的銷售量不低于240件的情況下,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大?最大利潤是多少?
(3)小張決定從這款紀(jì)念品每天的銷售利潤中捐出150元給希望工程,為了保證捐款后這款紀(jì)念品每天剩余利潤不低于3600元,試確定該熊貓紀(jì)念物銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P、Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長的最大值與最小值的和是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線上的一點(diǎn),其中,過點(diǎn)作軸于點(diǎn),連接.
(1)已知的面積是,求的值;
(2)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,且點(diǎn)的對應(yīng)點(diǎn)恰好落在該雙曲線上,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com