【題目】據(jù)醫(yī)學(xué)研究,使用某種抗生素治療心肌炎,人體內(nèi)每毫升血液中的含藥量不少于4微克時(shí),治療有效.如果一患者按規(guī)定劑量服用這種抗生素,服用后每毫升血液中的含藥量(微克)與服用后的時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示:

(1)如果上午8時(shí)服用該藥物, 時(shí)該藥物的濃度達(dá)到最大值 微克/毫升;

(2)根據(jù)圖象求出從服用藥物起到藥物濃度最高時(shí)yt之間的函數(shù)解析式;

(3)如果上午8時(shí)服用該藥物, 時(shí)該藥物開始有效,有效時(shí)間一共是 小時(shí);

【答案】112,8;(2;(310,5.

【解析】

1)根據(jù)函數(shù)圖象可知,當(dāng)時(shí),取得最大值,且最大值為8,即可求得本問;

2)根據(jù)圖象可得,從服用藥物起到藥物濃度最高時(shí),之間的函數(shù)解析式為圖象中的正比例函數(shù)那段,將圖象上代入即可得;

3)由題意,求出時(shí),在正比例函數(shù)上的值,即可解;又因時(shí),,所以藥物有效時(shí)間總共為小時(shí).

1)由函數(shù)圖象可知,當(dāng)時(shí),取得最大值,且最大值為8

則如果上午8時(shí)服用該藥物,到時(shí)該藥物的濃度達(dá)到最大值8微克/毫升

故答案為:128;

2)根據(jù)圖象可得,需要求的是時(shí),正比例函數(shù)那段,

設(shè),將代入得:

解得:

則所求的之間的函數(shù)解析式為;

3)把,代入題(2)所求的函數(shù)解析式得,解得

從圖象中可得,時(shí),

由題意得治療有效

則如果上午8時(shí)服用該藥物,到時(shí)該藥物開始有效,有效時(shí)間一共是小時(shí)

故答案為:105.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAC邊上的一點(diǎn),DGAB,延長ABE,使BE=GD,連接DEBCF

(1)求證:GF=BF;

(2)ABC的邊長為a,BE的長為b,且a,b滿足(a7)2+(b3)2=0,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,OA1B1是邊長為2的等邊三角形,作B2A2B1OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作B2A3B3B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c的對(duì)稱軸為x=2,且過點(diǎn)C(0,3)

(1)求此拋物線的解析式;

(2)證明:該拋物線恒在直線y=﹣2x+1上方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個(gè)單位長度后得到的ABC

(2) 請畫出ABC關(guān)于原點(diǎn)對(duì)稱的ABC;

(3) 在軸上求作一點(diǎn)P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,CBCD,∠D+ABC180°,CEADE

1)求證:AC平分∠DAB;

2)若AE3ED6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(m為常數(shù),m>1,x>0)的圖象經(jīng)過點(diǎn)P(m,1)Q(1,m),直線PQx軸,y軸分別交于C,D兩點(diǎn),點(diǎn)M(x,y)是該函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M分別作x軸和y軸的垂線,垂足分別為A,B.

(1)求∠OCD的度數(shù);

(2)當(dāng)m=3,1<x<3時(shí),存在點(diǎn)M使得OPM∽△OCP,求此時(shí)點(diǎn)M的坐標(biāo);

(3)當(dāng)m=5時(shí),矩形OAMBOPQ的重疊部分的面積能否等于4.1?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片放入以所在直線為軸,邊上一點(diǎn)為坐標(biāo)原點(diǎn)的平面直角坐標(biāo)系中,連結(jié)。將紙片沿折疊,點(diǎn)恰好落在邊上點(diǎn)處,若,則點(diǎn)的坐標(biāo)為________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A1,0),C0,2).

1)求拋物線的表達(dá)式;

2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;

3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案