【題目】如圖,已知CB//OA,∠C=∠A104°,點E,FBC上,OE平分∠COF,OB平分∠AOF

1)求證:OC//AB

2)求∠EOB的度數(shù);

3)若平行移動AB,在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,請說明理由.

【答案】1)見解析;(238°;(3)存在,57°

【解析】

1)先根據(jù)兩直線平行,同旁內(nèi)角互補可知:∠C +COA =180°,再根據(jù)等角代換可得:∠A +COA =180°,然后根據(jù)平行線的判定定理可得OCAB;

2)根據(jù)兩直線平行,同旁內(nèi)角互補求出∠COA,再根據(jù)角平分線的定義求出∠EOBCOA,代入數(shù)據(jù)即可;

3)先根據(jù)三角形內(nèi)角和定理求出∠COE=∠BOA,從而得到OEOF、OB是∠COA的四等分線,再利用三角形內(nèi)角和定理列式計算即可.

證明:(1)∵ CBOA,

∴∠C +COA =180° ,

∵∠C=A,

∴∠A +COA =180°,

OCAB;

2)∵∠C=104°,

∴∠COA=180°-C =76° ,

OE平分∠COFOB平分∠AOF ,

∴∠COE=EOF,∠FOB=BOA,

∴∠EOB =EOF +FOB =COF +AOF =COA =38° ;

3)在△COE和△AOB中,

∵∠C =A,∠OEC =OBA,

∴∠COE =BOA ,

OE、OF、OB是∠COA的四等分線,

COE =EOF =FOB =BOA,

∴∠COE =COA =×76°=19°,

∴∠OEC =180°-C -COE =180°-104°-19°= 57°,

答:存在某種情況使∠OEC=OBA,此時度數(shù)為 57°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AD, AC=AE, 1=2

1)求證:△ABC≌△ADE;

2)找出圖中與∠1 ,∠2相等的角(用圖中給出的已知點直接寫出結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點為直線上的一個動點(與點不重合),分別作的角平分線,兩角平分線所在直線交于點

1)若點在線段上,如圖1

①依題意補全圖1;

②求的度數(shù);

2)當(dāng)點在直線上運動時,的度數(shù)是否變化?若不變,請說明理由;若變化,畫出相應(yīng)的圖形,并直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點Aa,0)和B0,b)滿足,分別過點A、Bx軸、y軸的垂線交于點C,如圖,點P從原點出發(fā),以每秒2個單位長度的速度沿著O-B-C-A-O的路線移動.

1)寫出A、B、C三點的坐標(biāo);

2)當(dāng)點P移動了6秒時,描出此時P點的位置,并寫出點P的位置坐標(biāo);

3)連結(jié)(2)中B、P兩點,將線段BP向下平移h個單位(h0),得到BP′,若BP′將四邊形OACB的周長分成相等的兩部分,求h的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點EABCD內(nèi)部,AFBE,DFCE.

(1)求證:△BCE≌△ADF;

(2)設(shè)ABCD的面積為20,求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備購進一批甲、乙兩種辦公桌若干張,并且每買1張辦公桌必須買2把椅子,椅子每把100元,若學(xué)校購進20張甲種辦公桌和15張乙種辦公桌共花費24000元;購買10張甲種辦公桌比購買5張乙種辦公桌多花費2000元.

(1)求甲、乙兩種辦公桌每張各多少元?

(2)若學(xué)校購買甲乙兩種辦公桌共40張,且甲種辦公桌數(shù)量不多于乙種辦公桌數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:如圖1,點A,B在直線l的同側(cè),在直線l上找一點P,使得AP+BP的值最小.

小明的思路是:如圖2所示,先作點A關(guān)于直線l的對稱點A′,使點A′,B分別位于直線l的兩側(cè),再連接A′B,根據(jù)“兩點之間線段最短”可知A′B與直線l的交點P即為所求.

請你參考小明同學(xué)的思路,探究并解決下列問題:

(1)如圖3,在圖2的基礎(chǔ)上,設(shè)AA'與直線l的交點為C,過點B作BDl,垂足為D.若CP=1,AC=1,PD=2,直接寫出AP+BP的值;

(2)將(1)中的條件“AC=1”去掉,換成“BD=4﹣AC”,其它條件不變,直接寫出此時AP+BP的值;

(3)請結(jié)合圖形,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案