【題目】如圖,以G(0,3)為圓心,半徑為6的圓與x軸交于A.B兩點(diǎn),與y軸交于C,D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CF⊥AE于F,點(diǎn)E在⊙G的運(yùn)動(dòng)過(guò)程中,線段FG的長(zhǎng)度的最小值為( )
A.1B.2-2C.3D.33
【答案】D
【解析】
如圖,連接AC,作GM⊥AC,連接AG,由CF⊥AE于F可知,點(diǎn)F在以AC為直徑的圓M上移動(dòng),當(dāng)點(diǎn)F在MG的延長(zhǎng)線上時(shí),FG的長(zhǎng)最小,根據(jù)含30°直角三角形的性質(zhì)以及勾股定理求出MF,MG即可解答.
解:如圖,連接AC,作GM⊥AC,連接AG,
∵GO⊥AB,
∴OA=OB
在Rt△AGO中,AG=6,OG=3,
∴AG=2OG,OA=,
∴∠GAO=30°,∠AGO=60°,
∵GC=GA=6,
∴∠ACG=∠CAG,
∵∠AGO=∠ACG+∠CAG,
∴∠ACG=∠CAG=30°,
∴AC=2AO=6,MG=,
∴AM=3,
∵CF⊥AE于F,
∴點(diǎn)F在以AC為直徑的圓M上移動(dòng),
當(dāng)點(diǎn)F在MG的延長(zhǎng)線上時(shí),FG的長(zhǎng)最小,最小值為FM-MG=3-3,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 問(wèn)題發(fā)現(xiàn):如圖(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),H為CD的中點(diǎn),當(dāng)點(diǎn)C與點(diǎn)E重臺(tái)時(shí),BH與AE的位置關(guān)系為______,BH與AE的數(shù)量關(guān)系為______;
問(wèn)題證明:在Rt△BDE繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明若不成立,請(qǐng)說(shuō)明理由;
拓展應(yīng)用:在Rt△BDE繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,當(dāng)DE∥BC時(shí),請(qǐng)直接寫出BH2的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC于點(diǎn)D,BD=6,DC=4,求AD的長(zhǎng).小明同學(xué)利用翻折,巧妙地解答了此題,按小明的思路探究并解答下列問(wèn)題:
(1)分別以AB,AC所在直線為對(duì)稱軸,畫出△ABD和△ACD的對(duì)稱圖形,點(diǎn)D的對(duì)稱點(diǎn)分別為點(diǎn)E,F,延長(zhǎng)EB和FC相交于點(diǎn)G,求證:四邊形AEGF是正方形;
(2)設(shè)AD=x,建立關(guān)于x的方程模型,求出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)銷售是一種重要的銷售方式.某農(nóng)貿(mào)公司新開設(shè)了一家網(wǎng)店,銷售當(dāng)?shù)剞r(nóng)產(chǎn)品.其中一種當(dāng)?shù)靥禺a(chǎn)在網(wǎng)上試銷售,其成本為每千克2元.公司在試銷售期間,調(diào)查發(fā)現(xiàn),每天銷售量與銷售單價(jià)(元)滿足如圖所示的函數(shù)關(guān)系(其中).
(1)若,求與之間的函數(shù)關(guān)系式;
(2)銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)省材料,某農(nóng)戶利用一段墻體為一邊(墻體的長(zhǎng)為10米),用總長(zhǎng)為40m的圍網(wǎng)圍成如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.
(1)求AE:EB的值;
(2)當(dāng)BE的長(zhǎng)為何值時(shí),長(zhǎng)方形ABCD的面積達(dá)到72m2?
(3)當(dāng)BE的長(zhǎng)為何值時(shí),矩形區(qū)域①的面積達(dá)到最大值?并求出其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=BD.
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別,
(1)隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查本校學(xué)生對(duì)“關(guān)燈一小時(shí)”有關(guān)情況的了解程度.學(xué)校政教處隨機(jī)抽取部分同學(xué)進(jìn)行了調(diào)查,將調(diào)查結(jié)果分為:“A—不太了解、B—基本了解、C—了解較多、D—非常了解”四個(gè)等級(jí),依據(jù)相關(guān)數(shù)據(jù)繪制成如下兩幅統(tǒng)計(jì)圖.
(1)這次調(diào)查抽取了多少名學(xué)生?
(2)根據(jù)兩個(gè)統(tǒng)計(jì)圖提供的信息,補(bǔ)全這兩個(gè)統(tǒng)計(jì)圖;
(3)若該校有 3000 名學(xué)生,請(qǐng)你估計(jì)全校對(duì)“關(guān)燈一小時(shí)”非常了解的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步改善路容路貌,提升干線公路美化度,某地相關(guān)部門初步擬定派一個(gè)工程隊(duì)對(duì)一段長(zhǎng)度不少于39000米的公路進(jìn)行路基標(biāo)準(zhǔn)化整修.該工程隊(duì)以舊設(shè)備與新設(shè)備交替使用的方式施工,原計(jì)劃舊設(shè)備每小時(shí)整修公路30米,新設(shè)備每小時(shí)整修公路60米
(1)出于保護(hù)舊設(shè)備的目的,該工程隊(duì)計(jì)劃使用新設(shè)備的時(shí)間比使用舊設(shè)備的時(shí)間多,當(dāng)這個(gè)工程完工時(shí),舊設(shè)備的使用時(shí)間至少為多少小時(shí)?
(2)通過(guò)精確的勘察、測(cè)測(cè)量、規(guī)劃,以及新增了部分支線公路整修,此工程的實(shí)際施工里程比最初擬定的最少里程39000米多了9000米,于是在實(shí)際施工中,舊設(shè)備在整修公路效率不變的情況下,使用時(shí)間比(1)中的最小值多,同時(shí),因?yàn)楣と瞬僮餍略O(shè)備不夠熟練,使得得新設(shè)備整修公路的效率比原計(jì)劃下降了,使用時(shí)間比(1)中新設(shè)備使用的最短時(shí)間多,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com