【題目】如圖,在△ABC中,∠BAC=45°,ADBC于點(diǎn)D,BD=6,DC=4,求AD的長(zhǎng).小明同學(xué)利用翻折,巧妙地解答了此題,按小明的思路探究并解答下列問題:

1)分別以AB,AC所在直線為對(duì)稱軸,畫出△ABD和△ACD的對(duì)稱圖形,點(diǎn)D的對(duì)稱點(diǎn)分別為點(diǎn)E,F,延長(zhǎng)EBFC相交于點(diǎn)G,求證:四邊形AEGF是正方形;

2)設(shè)AD=x,建立關(guān)于x的方程模型,求出AD的長(zhǎng).

【答案】1)證明見解析;(212

【解析】

1)先根據(jù)△ABD≌△ABE,△ACD≌△ACF,得出∠EAF90;再根據(jù)對(duì)稱的性質(zhì)得到AEAF,從而說明四邊形AEGF是正方形;

2)利用勾股定理,建立關(guān)于x的方程模型(x62+(x42102,求出ADx12

1)證明:由題意可得:△ABD≌△ABE,△ACD≌△ACF

∴∠DAB=EAB,∠DAC=FAC,又∠BAC=45,

∴∠EAF=90

又∵ADBC,

∴∠E=ADB=90,∠F=ADC=90,

∴四邊形AEGF是矩形,

又∵AE=ADAF=AD,

AE=AF,

∴矩形AEGF是正方形;

2)解:設(shè)AD=x,則AE=EG=GF=x

BD=6,DC=4,

BE=6CF=4,

BG=x6,CG=x4,

RtBGC中,BG2+CG2=BC2,

∴(x62+x42=102

化簡(jiǎn)得:x210x24=0

解得:x1=12x2=2(舍去)

所以AD=x=12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,拋物線的頂點(diǎn)為M:平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性AMB恒為等腰三角形,我們規(guī)定:當(dāng)AMB為直角三角形時(shí),就稱AMB為該拋物線的完美三角形

1)如圖2,求出拋物線yx2完美三角形斜邊AB的長(zhǎng);

2)若拋物線yax2+4完美三角形的斜邊長(zhǎng)為4,求a的值;

3)若拋物線ymx2+2x+n5完美三角形斜邊長(zhǎng)為n,且ymx2+2x+n5的最大值為﹣1,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.

已知是比例三角形,,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);

如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.

如圖2,在的條件下,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若將左圖正方形剪成四塊,恰能拼成右圖的矩形,設(shè)a=1,則b=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點(diǎn)A,作ABx軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△CBD,若點(diǎn)B的坐標(biāo)為(40),則點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正方形ABCD內(nèi)一點(diǎn),∠APB=135 , BP=1,AP=,求PC的值(  )

A. B. 3 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰RtABC中,∠A90°,點(diǎn)D,E分別在邊ABAC上,ADAE,連接DC,點(diǎn)M,PN分別為DE,DC,BC的中點(diǎn).

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   

2)探究證明:把ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

3)拓展延伸:把ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD8,AB20,請(qǐng)直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以G(0,3)為圓心,半徑為6的圓與x軸交于AB兩點(diǎn),與y軸交于CD兩點(diǎn),點(diǎn)EG上一動(dòng)點(diǎn),CFAEF,點(diǎn)EG的運(yùn)動(dòng)過程中,線段FG的長(zhǎng)度的最小值為(  )

A.1B.2-2C.3D.33

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,且ABmm為常數(shù)),點(diǎn)C的中點(diǎn),點(diǎn)D為圓上一動(dòng)點(diǎn),過A點(diǎn)作⊙O的切線交BD的延長(zhǎng)線于點(diǎn)P,弦CDAB于點(diǎn)E

1)當(dāng)DCAB時(shí),則   ;

2)①當(dāng)點(diǎn)D上移動(dòng)時(shí),試探究線段DA,DBDC之間的數(shù)量關(guān)系;并說明理由;

②設(shè)CD長(zhǎng)為t,求△ADB的面積St的函數(shù)關(guān)系式;

3)當(dāng)時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案