【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC于點(diǎn)D,BD=6,DC=4,求AD的長(zhǎng).小明同學(xué)利用翻折,巧妙地解答了此題,按小明的思路探究并解答下列問題:
(1)分別以AB,AC所在直線為對(duì)稱軸,畫出△ABD和△ACD的對(duì)稱圖形,點(diǎn)D的對(duì)稱點(diǎn)分別為點(diǎn)E,F,延長(zhǎng)EB和FC相交于點(diǎn)G,求證:四邊形AEGF是正方形;
(2)設(shè)AD=x,建立關(guān)于x的方程模型,求出AD的長(zhǎng).
【答案】(1)證明見解析;(2)12.
【解析】
(1)先根據(jù)△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90;再根據(jù)對(duì)稱的性質(zhì)得到AE=AF,從而說明四邊形AEGF是正方形;
(2)利用勾股定理,建立關(guān)于x的方程模型(x6)2+(x4)2=102,求出AD=x=12.
(1)證明:由題意可得:△ABD≌△ABE,△ACD≌△ACF,
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45,
∴∠EAF=90.
又∵AD⊥BC,
∴∠E=∠ADB=90,∠F=∠ADC=90,
∴四邊形AEGF是矩形,
又∵AE=AD,AF=AD,
∴AE=AF,
∴矩形AEGF是正方形;
(2)解:設(shè)AD=x,則AE=EG=GF=x.
∵BD=6,DC=4,
∴BE=6,CF=4,
∴BG=x﹣6,CG=x﹣4,
在Rt△BGC中,BG2+CG2=BC2,
∴(x﹣6)2+(x﹣4)2=102.
化簡(jiǎn)得:x2﹣10x﹣24=0
解得:x1=12,x2=﹣2(舍去)
所以AD=x=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點(diǎn)為M:平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.
(1)如圖2,求出拋物線y=x2的“完美三角形”斜邊AB的長(zhǎng);
(2)若拋物線y=ax2+4的“完美三角形”的斜邊長(zhǎng)為4,求a的值;
(3)若拋物線y=mx2+2x+n﹣5的“完美三角形”斜邊長(zhǎng)為n,且y=mx2+2x+n﹣5的最大值為﹣1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
已知是比例三角形,,,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);
如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△CBD,若點(diǎn)B的坐標(biāo)為(4,0),則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正方形ABCD內(nèi)一點(diǎn),∠APB=135 , BP=1,AP=,求PC的值( )
A. B. 3 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰Rt△ABC中,∠A=90°,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=8,AB=20,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以G(0,3)為圓心,半徑為6的圓與x軸交于A.B兩點(diǎn),與y軸交于C,D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CF⊥AE于F,點(diǎn)E在⊙G的運(yùn)動(dòng)過程中,線段FG的長(zhǎng)度的最小值為( )
A.1B.2-2C.3D.33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,且AB=m(m為常數(shù)),點(diǎn)C為的中點(diǎn),點(diǎn)D為圓上一動(dòng)點(diǎn),過A點(diǎn)作⊙O的切線交BD的延長(zhǎng)線于點(diǎn)P,弦CD交AB于點(diǎn)E.
(1)當(dāng)DC⊥AB時(shí),則= ;
(2)①當(dāng)點(diǎn)D在上移動(dòng)時(shí),試探究線段DA,DB,DC之間的數(shù)量關(guān)系;并說明理由;
②設(shè)CD長(zhǎng)為t,求△ADB的面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com