【題目】按照有關(guān)規(guī)定:距離鐵軌道200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.

如圖是一個小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點,點C、A、B在一直線上,且DACA,ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:

(1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請你通過計算用所學(xué)的數(shù)學(xué)知識說明理由.

(2)若一列長度為228米的高鐵以70/秒的速度通過時,則A單元用戶受到影響時間有多長?( 溫馨提示:1.4,1.7,6.1)

【答案】(1)A單元用戶會受到影響,售樓人員的說法不可信;(2)受影響的時間為5秒.

【解析】

(1)作過點,垂足為,根據(jù)三角函數(shù)可求得長,再與200米比較大小即可求解;(2)上找到點、,使得米,根據(jù)勾股定理可求,根據(jù)三角函數(shù)可求,根據(jù)速度可得單元用戶受到影響時間有多長.

(1)作過點,垂足為,

,,

米,

,

單元用戶會受到影響,售樓人員的說法不可信.

(2)上找到點、,使得

,

又∵速度(/),

∴時間秒,

即受影響的時間為5秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是個單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是;△AOC繞原點O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是度;
(2)連結(jié)AD,交OC于點E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,直線y=x向下平移2個單位后和直線y=kx+b(k≠0)重合,直線y=kx+b(k≠0)與x軸交于點A,與y軸交于點B .

(1)請直接寫出直線y=kx+b(k≠0)的表達(dá)式和點B的坐標(biāo);

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是菱形,點E、F分別是菱形ABCD邊AD、CD的中點.

(1)求證:BE=BF;

(2)當(dāng)△BEF為等邊三角形時,的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣ x+1與x軸、y軸分別交于B點、A點,直線y=2x﹣2與x軸、y軸分別交于D點、E點,兩條直線交于點C;

(1)求A、B、C、D、E的坐標(biāo);
(2)請用相似三角形的相關(guān)知識證明:AB⊥DE;
(3)求△CBD的外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABC=45°,E、F分別在CD和BC的延長線上,AEBD,EFC=30°, AB=2.

求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,池塘邊有一塊長為18米,寬為10米的長方形土地,現(xiàn)在將其中三面留出寬都是x米的小路,中間余下的長方形部分做菜地.

(1)菜地的長a =   米,寬b=   米(用含x的代數(shù)式表示);

(2)菜地的面積S=   平方米(用含x的代數(shù)式表示);

(3)當(dāng)x=1米時,求菜地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個多邊形,你能否用一直線去截這個多邊形,使得到的新多邊形分別滿足下列條件:畫出圖形,把截去的部分打上陰影

新多邊形內(nèi)角和比原多邊形的內(nèi)角和增加了

新多邊形的內(nèi)角和與原多邊形的內(nèi)角和相等.

新多邊形的內(nèi)角和比原多邊形的內(nèi)角和減少了

將多邊形只截去一個角,截后形成的多邊形的內(nèi)角和為,求原多邊形的邊數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

查看答案和解析>>

同步練習(xí)冊答案