【題目】拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)

(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)
(3)直線l經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過(guò)點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:把B、C兩點(diǎn)坐標(biāo)代入拋物線解析式可得 ,

解得 ,

∴拋物線解析式為y=x2﹣2x﹣3;


(2)解:如圖1,連接BC,過(guò)Py軸的平行線,交BC于點(diǎn)M,交x軸于點(diǎn)H,

在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,

∴A點(diǎn)坐標(biāo)為(﹣1,0),

∴AB=3﹣(﹣1)=4,且OC=3,

∴S△ABC= AB×OC= ×4×3=6,

∵B(3,0),C(0,﹣3),

∴直線BC解析式為y=x﹣3,

設(shè)P點(diǎn)坐標(biāo)為(x,x2﹣2x﹣3),

則M點(diǎn)坐標(biāo)為(x,x﹣3),

∵P點(diǎn)在第四限,

∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,

∴S△PBC= PMOH+ PMHB= PM(OH+HB)= PMOB= PM,

∴當(dāng)PM有最大值時(shí),△PBC的面積最大,則四邊形ABPC的面積最大,

∵PM=﹣x2+3x=﹣(x﹣ 2+ ,

∴當(dāng)x= 時(shí),PMmax= ,則S△PBC= × = ,

此時(shí)P點(diǎn)坐標(biāo)為( ,﹣


(3)解:如圖2,設(shè)直線m交y軸于點(diǎn)N,交直線l于點(diǎn)G,

則∠AGP=∠GNC+∠GCN,

當(dāng)△AGB和△NGC相似時(shí),必有∠AGB=∠CGB,

又∠AGB+∠CGB=180°,

∴∠AGB=∠CGB=90°,

∴∠ACO=∠OBN,

在Rt△AON和Rt△NOB中,

∴Rt△AON≌Rt△NOB(ASA),

∴ON=OA=1,

∴N點(diǎn)坐標(biāo)為(0,﹣1),

設(shè)直線m解析式為y=kx+d,把B、N兩點(diǎn)坐標(biāo)代入可得 ,解得 ,

∴直線m解析式為y= x﹣1,

即存在滿足條件的直線m,其解析式為y= x﹣1.


【解析】(1)利用待定系數(shù)法即可得出結(jié)論;(2)先確定出點(diǎn)A的坐標(biāo),進(jìn)而求出AB,再用三角形的面積公式求出三角形ABC的面積,最后求出PM,即可建立三角形PBC的面積的函數(shù)關(guān)系式,即可得出結(jié)論;(3)先判斷出∠ACO=∠OBN進(jìn)而得出Rt△AON≌Rt△NOB即可確定出N點(diǎn)坐標(biāo)為(0,﹣1),最后用待定系數(shù)法即可得出結(jié)論.
【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是斜坡AC上的一根電線桿AB用鋼絲繩BC進(jìn)行固定的平面圖.已知斜坡AC的長(zhǎng)度為4 m,鋼絲繩BC的長(zhǎng)度為5 mABAD于點(diǎn)A,CDAD于點(diǎn)D,若CD2 m,則電線桿AB的高度是多少.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為30米的籬笆圍成,已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由;
(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在平面直角坐標(biāo)系中,OABC的邊OC落在x軸的正半軸上,且點(diǎn)C4,0),B6,2),直線y=2x+bOABC的面積平分,則b=_______.

2)在平面直角坐標(biāo)系中,直線y2x3關(guān)于原點(diǎn)對(duì)稱(chēng)的直線的表達(dá)式為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)四個(gè)班在植樹(shù)節(jié)這天義務(wù)植樹(shù)一班植樹(shù)x棵,二班植樹(shù)的棵數(shù)比一班的2倍少40棵,三班植樹(shù)的棵數(shù)比二班的一半多30棵,四班植樹(shù)的棵數(shù)比三班的三分之一多50棵.

求這四個(gè)班共植樹(shù)多少棵用含x的代數(shù)式表示;

當(dāng)時(shí),四個(gè)班哪個(gè)班植樹(shù)最多?

若四個(gè)班共植樹(shù)266棵,一班植樹(shù)多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(
A.20170=0
B. =±9
C.(x23=x5
D.3﹣1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016雙十一期間,某快遞公司計(jì)劃租用甲、乙兩種車(chē)輛快遞貨物,從貨物量來(lái)計(jì)算:若租用兩種車(chē)輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車(chē)輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車(chē)輛完成任務(wù)天數(shù)的2倍.

(1)求甲、乙兩種車(chē)輛單獨(dú)完成任務(wù)分別需要多少天?

(2)已知租用甲、乙兩種車(chē)輛合運(yùn)需租金65000元,甲種車(chē)輛每天的租金比乙種車(chē)輛每天的租金多1500元,試問(wèn):租甲和乙兩種車(chē)輛、單獨(dú)租甲種車(chē)輛、單獨(dú)租乙種車(chē)輛這三種租車(chē)方案中,哪一種租金最少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M為銳角三角形ABC內(nèi)任意一點(diǎn),連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN.

(1)求證:△AMB≌△ENB;

(2)若AM+BM+CM的值最小,則稱(chēng)點(diǎn)M△ABC的費(fèi)馬點(diǎn).若點(diǎn)M△ABC的費(fèi)馬點(diǎn),試求此時(shí)∠AMB、∠BMC、∠CMA的度數(shù);

(3)小翔受以上啟發(fā),得到一個(gè)作銳角三角形費(fèi)馬點(diǎn)的簡(jiǎn)便方法:如圖,分別以△ABCAB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設(shè)交點(diǎn)為M,則點(diǎn)M即為△ABC的費(fèi)馬點(diǎn).試說(shuō)明這種作法的依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)完成下面的解答過(guò)程.

如圖,∠1=B,∠C=110°,求∠3的度數(shù).

解:∵∠1=B,

AD   。(  )

∴∠C+    =180°.(兩直線平行,同旁?xún)?nèi)角互補(bǔ))

∵∠C=110°,

∴∠2=    °.

∴∠3=    =70°.( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案