【題目】如圖,是斜坡AC上的一根電線桿AB用鋼絲繩BC進(jìn)行固定的平面圖.已知斜坡AC的長度為4 m,鋼絲繩BC的長度為5 m,ABAD于點(diǎn)A,CDAD于點(diǎn)D,若CD2 m,則電線桿AB的高度是多少.(結(jié)果保留根號(hào))

【答案】2+

【解析】

過點(diǎn)CCEADAB于點(diǎn)E,得到矩形ADCE,那么AE=CD=2,CE=AD.先在直角ACD中利用勾股定理求出AD,然后在直角BCE中利用勾股定理求出BE,那么AB=AE+BE,問題得解.

解 過點(diǎn)CCEADAB于點(diǎn)E,

ABAD于點(diǎn)A,CDAD于點(diǎn)D

∴四邊形ADCE是矩形,

AECD2,CEAD.

在直角ACD中,

∵∠ADC90°

AD2,

CEAD2.

在直角BCE中,∵∠BEC90°,

BE,

ABAEBE2.

即電線桿AB的高度是(2)m.

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了加強(qiáng)訓(xùn)練學(xué)生的籃球和足球運(yùn)球技能,準(zhǔn)備購買一批籃球和足球用于訓(xùn)練,已知1個(gè)籃球和2個(gè)足球共需116元;2個(gè)籃球和3個(gè)足球共需204

求購買1個(gè)籃球和1個(gè)足球各需多少元?

若學(xué)校準(zhǔn)備購進(jìn)籃球和足球共40個(gè),并且總費(fèi)用不超過1800元,則籃球最多可購買多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這四邊行ABCD中,點(diǎn)M、N分別在AB,CD邊上,將四邊形ABCD沿MN翻折,使點(diǎn)B、C分別在四邊形外部點(diǎn)B1 , C1處,則∠A+∠B1+∠C1+∠D=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上的點(diǎn)A和點(diǎn)B之間的距離為28個(gè)單位長度,點(diǎn)A在原點(diǎn)的左邊,距離原點(diǎn)8個(gè)單位長度,點(diǎn)B在原點(diǎn)的右邊.

()求點(diǎn)A,點(diǎn)B對(duì)應(yīng)的數(shù);

()數(shù)軸上點(diǎn)A以每秒1個(gè)單位長度出發(fā)向左移動(dòng),同時(shí)點(diǎn)B以每秒3個(gè)單位長度的速度向左移動(dòng),在點(diǎn)C處追上了點(diǎn)A,求點(diǎn)C對(duì)應(yīng)的數(shù).

()已知在數(shù)軸上點(diǎn)M從點(diǎn)A出發(fā)向右運(yùn)動(dòng),速度為每秒1個(gè)單位長度,同時(shí)點(diǎn)N從點(diǎn)B出發(fā)向右運(yùn)動(dòng),速度為每秒2個(gè)單位長度,設(shè)線段NO的中點(diǎn)為P(O為原點(diǎn)),在運(yùn)動(dòng)的過程中,線段的值是否變化?若不變,請(qǐng)說明理由并求其值;若變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“蘑菇石”是我國著名的自然保護(hù)區(qū)梵凈山的標(biāo)志,小明從山腳B點(diǎn)先乘坐纜車到達(dá)觀景平臺(tái)DE觀景,然后再沿著坡腳為29°的斜坡由E點(diǎn)步行到達(dá)“蘑菇石”A點(diǎn),“蘑菇石”A點(diǎn)到水平面BC的垂直距離為1890m.如圖,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的長度.(結(jié)果精確到0.1m,可參考數(shù)據(jù)sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,∠BOC=60°,頂點(diǎn)C的坐標(biāo)為(m,3 ),反比例函數(shù)y= 的圖象與菱形對(duì)角線AO交D點(diǎn),連接BD,當(dāng)DB⊥x軸時(shí),k的值是( )

A.6
B.﹣6
C.12
D.﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)

(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)
(3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案