【題目】如圖,⊙M交x軸于B、C兩點,交y軸于A,點M的縱坐標為2.B(﹣3,O),C(,O).

(1)求⊙M的半徑;

(2)若CE⊥AB于H,交y軸于F,求證:EH=FH.

(3)在(2)的條件下求AF的長.

【答案】(1)4;(2)見解析;(3)4.

【解析】

(1)過MMTBCTBM,由垂徑定理可求出BT的長,再由勾股定理即可求出BM的長;

(2)連接AE,由圓周角定理可得出∠AEC=ABC,再由AAS定理得出AEH≌△AFH,進而可得出結論;

(3)先由(1)中BMT的邊長確定出∠BMT的度數(shù),再由直角三角形的性質(zhì)可求出CG的長,由平行四邊形的判定定理判斷出四邊形AFCG為平行四邊形,進而可求出答案.

(1)如圖(一),過MMTBCTBM,

BC是⊙O的一條弦,MT是垂直于BC的直徑,

BT=TC=BC=2

BM==4;

(2)如圖(二),連接AE,則∠AEC=ABC,

CEAB,

∴∠HBC+BCH=90°

COF中,

∵∠OFC+OCF=90°,

∴∠HBC=OFC=AFH,

AEHAFH中,

,

∴△AEH≌△AFH(AAS),

EH=FH;

(3)由(1)易知,∠BMT=BAC=60°,

作直徑BG,連CG,則∠BGC=BAC=60°,

∵⊙O的半徑為4,

CG=4,

AG,

∵∠BCG=90°,

CGx軸,

CGAF,

∵∠BAG=90°,

AGAB,

CEAB,

AGCE,

∴四邊形AFCG為口,

AF=CG=4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,平分,交,,下列結論:①;②;③;④,其中正確的結論有____________. (填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結論時,需添加輔助線,則作法不正確的是( 。

A. 作∠APB的平分線PCAB于點C

B. 過點PPCAB于點CAC=BC

C. AB中點C,連接PC

D. 過點PPCAB,垂足為C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BC是⊙O的直徑,D、E是⊙O上的兩點,且弧CD=DE,連接EB、DO.

(1)求證:EB∥DO;

(2)連接EC,在∠CEB的外部作∠BEA=∠C,直線EA交CB的延長線于A,求證:直線EA是⊙O的切線;

(3)若EA=2,AB=1,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由6個大小相同的小正方形組成的方格.

1)如圖1,AB、C是三個格點,判斷ABBC的位置關系,并說明理由;

2)如圖2,直接寫出∠α+∠β的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組在討論變化的三角形時,知道大三角形與小三角形是位似圖形(如圖所示),則小三角形上的頂點(a,b)對應于大三角形上的頂點 ( )

A. (-2a,-2b) B. (2a,2b) C. (-2b,-2a) D. (-2a,-b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,兩個不全等的等腰直角三角形疊放在一起,并且有公共的直角頂點.

1)在圖1中,你發(fā)現(xiàn)線段的數(shù)量關系是______.直線相交成_____度角.

2)將圖1繞點順時針旋轉(zhuǎn)90°,連接得到圖2,這時(1)中的兩個結論是否成立?請作出判斷說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了推動我縣三進校園活動的廣泛開展,引導學生走向操場,走到陽光下,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:

(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為 ,圖①中的值為 ;

(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;

(3)根據(jù)樣本數(shù)據(jù),若學校計劃購買雙運動鞋,建議購買號運動鞋 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,CPQ的面積為S.

①求S關于m的函數(shù)表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案