【題目】如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.
(1)求證:FH=ED;
(2)當(dāng)AE為何值時(shí),△AEF的面積最大?
【答案】(1)見解析;(2)AE=2.
【解析】
(1)根據(jù)正方形的性質(zhì),可得EF=CE,再根據(jù)∠CEF=∠90°,進(jìn)而可得∠FEH=∠DCE,結(jié)合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質(zhì)可得FH=ED;
(2)設(shè)AE=a,用含a的函數(shù)表示△AEF的面積,再利用函數(shù)的最值求面積最大值即可.
(1)證明:
∵四邊形CEFG是正方形,
∴CE=EF,
∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
∴∠FEH=∠DCE,
在△FEH和△ECD中
,
∴△FEH≌△ECD,
∴FH=ED;
(2)設(shè)AE=a,則ED=FH=4a,
∴S =AEFH=a(4a),
= (a2) +2,
∴當(dāng)AE=2時(shí),△AEF的面積最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個共一個頂點(diǎn)的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.
(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長;
(3)如圖2,當(dāng)∠BCE=45°時(shí),求證:BM=ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點(diǎn)M,
(1)求正比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像寫出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)求ΔMOP的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D.連接AC,BD.
(1)寫出點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積.
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在,求出點(diǎn)P的坐標(biāo),若不存在,試說明理由;
(3)點(diǎn)Q是線段BD上的動點(diǎn),連接QC,QO,當(dāng)點(diǎn)Q在BD上移動時(shí)(不與B,D重合),給出下列結(jié)論:①的值不變;②的值不變,其中有且只有一個正確,請你找出這個結(jié)論并求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過點(diǎn)A(﹣1,0).
(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)P(m,t)為拋物線上的一個動點(diǎn),P關(guān)于原點(diǎn)的對稱點(diǎn)為P'.
① 當(dāng)點(diǎn)P' 落在該拋物線上時(shí),求m的值;
② 當(dāng)點(diǎn)P' 落在第二象限內(nèi),P'A2取得最小值時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長,交AB延長線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD=___°時(shí),四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一張長方形的紙對折,如圖所示可得到一條折痕(圖中虛線):繼續(xù)對折,對折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對折三次后,可以得到7條折痕,那么對折n次,可以得到___________條折痕.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價(jià)為15元/千克,如果售價(jià)為20元/千克,那么每天可售出250千克,如果售價(jià)為25元/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價(jià)x(元/千克)之間 存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該超市每天要獲得利潤810元,同時(shí)又要讓消費(fèi)者得到實(shí)惠,則售價(jià)x應(yīng)定于多少元?
(3)若櫻桃的售價(jià)不得高于28元/千克,請問售價(jià)定為多少時(shí),該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元。
(1)求1只A型節(jié)能燈和1只B型節(jié)能燈的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號的節(jié)能燈共80只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈的3倍,問如何購買最省錢,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com