【題目】函數(shù)ykxy=-在同一坐標(biāo)系內(nèi)的大致圖象是(  )

(1)    (2)

(3)    (4)

A. (1)(2)

B. (1)(3)

C. (2)(3)

D. (2)(4)

【答案】D

【解析】

分別根據(jù)反比例函數(shù)及正比例函數(shù)圖象的特點(diǎn)對四個(gè)選項(xiàng)進(jìn)行逐一分析即可.

解:(1)∵由反比例函數(shù)的圖象在一、三象限可知,-k>0,∴k<0,∴正比例函數(shù)y=kx的圖象經(jīng)過二、四象限,故錯(cuò)誤;
(2)∵由反比例函數(shù)的圖象在一、三象限可知,-k>0,∴k<0,∴正比例函數(shù)y=kx的圖象經(jīng)過二、四象限,故正確;
(3)∵由反比例函數(shù)的圖象在二、四象限可知,-k<0,∴k>0,∴正比例函數(shù)y=kx的圖象經(jīng)過一、三象限,故錯(cuò)誤;
(4)∵由反比例函數(shù)的圖象在二、四象限可知,-k<0,∴k>0,∴正比例函數(shù)y=kx的圖象經(jīng)過一、三象限,故正確;
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標(biāo)系,跨度AB=44米,∠A=45°,AC1=4米,點(diǎn)D2的坐標(biāo)為(-13,-1.69),則橋架的拱高OH=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).

(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是   

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于點(diǎn)C,D(如圖).

1)求證:AC=BD

2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,求球的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,FH是⊙O的切線,切點(diǎn)為F,F(xiàn)HBC,連結(jié)AFBCE,ABC的平分線BDAFD,連結(jié)BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列5個(gè)結(jié)論,其中正確的結(jié)論有( 。

①abc<0

②3a+c>0

③4a+2b+c<0

④2a+b=0

⑤b2>4ac

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBCAD2BDCD

(1)求證:∠BAC=90°;

(2)若BD=2,AC,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知MNEFBC,點(diǎn)A、D為直線MN上的兩動點(diǎn),ADa,BCbAEEDmn;

(1)當(dāng)點(diǎn)A、D重合,即a=0時(shí)(如圖1),試求EF.(用含mn,b的代數(shù)式表示)

(2)請直接應(yīng)用(1)的結(jié)論解決下面問題:當(dāng)A、D不重合,即a≠0,

如圖2這種情況時(shí),試求EF.(用含ab,m,n的代數(shù)式表示)

  1

   2

   3

如圖3這種情況時(shí),試猜想EFa、b之間有何種數(shù)量關(guān)系?并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案