【題目】如圖,已知拋物線m:y=ax2﹣6ax+c(a>0)的頂點(diǎn)A在x軸上,并過點(diǎn)B(0,1),直線n:y=﹣x+與x軸交于點(diǎn)D,與拋物線m的對(duì)稱軸l交于點(diǎn)F,過B點(diǎn)的直線BE與直線n相交于點(diǎn)E(﹣7,7).

(1)求拋物線m的解析式;

(2)P是l上的一個(gè)動(dòng)點(diǎn),若以B,E,P為頂點(diǎn)的三角形的周長最小,求點(diǎn)P的坐標(biāo);

(3)拋物線m上是否存在一動(dòng)點(diǎn)Q,使以線段FQ為直徑的圓恰好經(jīng)過點(diǎn)D?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)y=x2x+1;(2)點(diǎn)P坐標(biāo)為(3,);(3)點(diǎn)Q坐標(biāo)為(9,4)或(15,16).

【解析】

試題分析:(1)拋物線頂點(diǎn)在x軸上則可得出頂點(diǎn)縱坐標(biāo)為0,將解析式進(jìn)行配方就可以求出a的值,繼而得出函數(shù)解析式;(2)作出B點(diǎn)關(guān)于l的對(duì)稱點(diǎn)B,連接EB交l于點(diǎn)P,如圖所示,,三角形BEP為頂點(diǎn)的三角形的周長最小,再求出直線BE的解析式,進(jìn)而得出P點(diǎn)坐標(biāo);(3)先求出直線FD的解析式,結(jié)合以線段FQ為直徑的圓恰好經(jīng)過點(diǎn)D這個(gè)條件,明確FDG=90°,得出直線DG解析式的k值與直線FD解析式的k值乘積為1,利用D點(diǎn)坐標(biāo)求出直線DG解析式,將點(diǎn)Q坐標(biāo)用拋物線解析式表示后代入DG直線解析式可求出點(diǎn)Q坐標(biāo).

試題解析:(1)拋物線y=ax26ax+c(a>0)的頂點(diǎn)A在x軸上

配方得y=a(x3)29a+1,則有9a+1=0,解得a=

A點(diǎn)坐標(biāo)為(3,0),拋物線m的解析式為y=x2x+1;

(2)點(diǎn)B關(guān)于對(duì)稱軸直線x=3的對(duì)稱點(diǎn)B為(6,1)

連接EB交l于點(diǎn)P,如圖所示

設(shè)直線EB的解析式為y=kx+b,把(7,7)(6,1)代入得

解得

則函數(shù)解析式為y=x+

把x=3代入解得y=,

點(diǎn)P坐標(biāo)為(3,);

(3)y=x+與x軸交于點(diǎn)D,

點(diǎn)D坐標(biāo)為(7,0),

y=x+與拋物線m的對(duì)稱軸l交于點(diǎn)F,

點(diǎn)F坐標(biāo)為(3,2),

求得FD的直線解析式為y=x+,若以FQ為直徑的圓經(jīng)過點(diǎn)D,可得FDQ=90°,則DQ的直線解析式的k值為2,

設(shè)DQ的直線解析式為y=2x+b,把(7,0)代入解得b=14,則DQ的直線解析式為y=2x14,

設(shè)點(diǎn)Q的坐標(biāo)為(a,),把點(diǎn)Q代入y=2x14得

=2a14

解得a1=9,a2=15.

點(diǎn)Q坐標(biāo)為(9,4)或(15,16).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,拋物線L: (常數(shù)t>0)與x軸從左到右的交點(diǎn)為B,A,過線段OA的中點(diǎn)MMPx軸,交雙曲線于點(diǎn)P,且OA·MP=12.

1)求k值;

2)當(dāng)t=1時(shí),求AB長,并求直線MPL對(duì)稱軸之間的距離;

3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點(diǎn))記為G,用t表示圖象G最高點(diǎn)的坐標(biāo);

4)設(shè)L與雙曲線有個(gè)交點(diǎn)的橫坐標(biāo)為x0,且滿足4x06,通過L位置隨t變化的過程,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為,點(diǎn)Q的坐標(biāo)為,且,,若P,Q為某正方形的兩個(gè)頂點(diǎn),且該正方形的邊均與某條坐標(biāo)軸平行(含重合),則稱PQ互為“正方形點(diǎn)”(即點(diǎn)P是點(diǎn)Q的“正方形點(diǎn)”,點(diǎn)Q也是點(diǎn)P的“正方形點(diǎn)”).下圖是點(diǎn)PQ互為“正方形點(diǎn)”的示意圖.

已知點(diǎn)A的坐標(biāo)是(2,3),下列坐標(biāo)中,與點(diǎn)A互為正方形點(diǎn)的坐標(biāo)是____________.(填序號(hào))

(1,2);(-1,5);(3,2).

(2)若點(diǎn)B(1,2)的“正方形點(diǎn)”Cy軸上,求直線BC的表達(dá)式;

(3)點(diǎn)D的坐標(biāo)為(-1,0),點(diǎn)M的坐標(biāo)為(2,m),點(diǎn)N是線段OD上一動(dòng)點(diǎn)(含端點(diǎn)),若點(diǎn)M,N互為“正方形點(diǎn)”,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天一個(gè)巡警騎摩托車在一條南北大道上巡邏,他從崗?fù)こ霭l(fā),規(guī)定崗?fù)樵c(diǎn),向北為正,這段時(shí)間行駛記錄如下(單位:千米) +10-9,+7,-15,+6,-14+4,-2

1最后停留的地方在崗?fù)さ哪膫(gè)方向?距離崗?fù)ざ噙h(yuǎn)?

2)若摩托車行駛,每千米耗油0.06升,每升6.2元,且最后返回崗?fù)?/span>,這一天耗油共需多少元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),2015年國慶期間,無錫靈山風(fēng)景區(qū)某一天接待游客的人數(shù)為19800人次,將這個(gè)數(shù)字精確到千位,并用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)長方體,如圖,(單位:厘米)現(xiàn)將它“切成”完全一樣的三個(gè)長方體。

(1)共有( )種切法。

(2)怎樣切,使切成三塊后的長方體的表面積的和比原來長方體的表面積增加得最多,算一算表面積最多增加了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,

3÷3÷3÷3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方,(3÷3÷3÷3)記作(﹣3,讀作3的圈4次方,一般地,把a≠0記作a,讀作“a的圈n次方

初步探究

1)直接寫出計(jì)算結(jié)果:2=________, =________;

2)關(guān)于除方,下列說法錯(cuò)誤的是________

A.任何非零數(shù)的圈2次方都等于1B.對(duì)于任何正整數(shù)n,1=1; C.3=4 D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).

深入思考

我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?

1)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成冪的形式.(﹣3=________5=________; =________

2)想一想:將一個(gè)非零有理數(shù)a的圈n次方寫成冪的形式等于________

3)算一算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于A,B兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0)。

(1)求m的值及拋物線的頂點(diǎn)坐標(biāo);

(2)點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程(x+6)2 -9=0的解是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案