【題目】已知點上.則下列命題為真命題的是(

A.若半徑平分弦.則四邊形是平行四邊形

B.若四邊形是平行四邊形.則

C..則弦平分半徑

D.若弦平分半徑.則半徑平分弦

【答案】B

【解析】

根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對各項判斷即可.

A.∵半徑平分弦,

OBACAB=BC,不能判斷四邊形OABC是平行四邊形,

假命題;

B.∵四邊形是平行四邊形,OA=OC,

∴四邊形是菱形,

OA=AB=OBOABC,

∴△OAB是等邊三角形,

∴∠OAB=60,

∴∠ABC=120,

真命題;

C.∵

∴∠AOC=120,不能判斷出弦平分半徑

假命題;

D.只有當(dāng)弦垂直平分半徑時,半徑平分弦,所以是

假命題,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,平分,交于點垂直平分線段 ,分別交、 、延長線于點、,則下列結(jié)論: ; ; .其中正確的結(jié)論是__________.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù))的圖象經(jīng)過點,過點的直線軸、軸分別交于,兩點.

1)求反比例函數(shù)的表達(dá)式;

2)若的面積為的面積的2倍,求此直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)傳統(tǒng)文化進(jìn)校園活動,某校準(zhǔn)備成立經(jīng)典誦讀、傳統(tǒng)禮儀、民族器樂地方戲曲等四個課外活動小組.學(xué)生報名情況如圖(每人只能選擇一個小組):

1)報名參加課外活動小組的學(xué)生共有 人,將條形圖補充完整;

2)扇形圖中m= ,n= ;

3)根據(jù)報名情況,學(xué)校決定從報名經(jīng)典誦讀小組的甲、乙、丙、丁四人中隨機安排兩人到地方戲曲小組,甲、乙恰好都被安排到地方戲曲小組的概率是多少?請用列表或畫樹狀圖的方法說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】423日是世界讀書日,校文學(xué)社為了解學(xué)生課外閱讀的情況,抽樣調(diào)查了部分學(xué)生每周用于課外閱讀的時間,過程如下:

收集數(shù)據(jù):從學(xué)校隨機抽取20名,進(jìn)行了每周用于課外閱讀時間的調(diào)查,數(shù)據(jù)如下(單位:):

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):按如下分?jǐn)?shù)段整理樣本數(shù)據(jù)并補全表格:

等級

人數(shù)

3

8

4

分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:

平均數(shù)

中位數(shù)

眾數(shù)

80

得出結(jié)論:

1)請寫出表中__________________;__________;

2)如果該,F(xiàn)有學(xué)生7500人,估計等級為的學(xué)生有_________名;

3)假設(shè)平均閱讀一本課外書的時間為,請你選擇一種統(tǒng)計量估計該校學(xué)生每人一年(按52周計算)平均閱讀多少本課外書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.已知四邊形是矩形.點的延長線上.相交于點,與相交于點

求證:

,求的長;

如圖2,連接,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABBC,以ABC的邊AB為直徑作⊙O,交AC于點D,過點DDEBC,垂足為點E

1)試證明DE是⊙O的切線;

2)若⊙O的半徑為5,AC6,求此時DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦“創(chuàng)建全國文明城市”知識競賽,計劃購買甲、乙兩種獎品共30件.其中甲種獎品每件30元,乙種獎品每件20元.

1)如果購買甲、乙兩種獎品共花費800元,那么這兩種獎品分別購買了多少件?

2)若購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的3倍,如何購買甲、乙兩種獎品,使得總花費最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)的圖像(記為拋物線)與y軸交于點C,與x軸分別交于點AB,點A、B的橫坐標(biāo)分別記為,,且

1)若,,且過點,求該二次函數(shù)的表達(dá)式;

2)若關(guān)于x的一元二次方程的判別式.求證:當(dāng)時,二次函數(shù)的圖像與x軸沒有交點.

3)若,點P的坐標(biāo)為,過點P作直線l垂直于y軸,且拋物線的頂點在直線l上,連接OP、APBP,PA的延長線與拋物線交于點D,若,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案