【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣2,0),C(﹣4,3).
(1)請畫出△ABC關于y軸對稱的△A'B′C′(其中A'、B′、C′分別是A、B、C的對稱點,不寫畫法);
(2)寫出C′的坐標,并求△ABC的面積;
(3)在y軸上找出點P的位置,使線段PA+PB的最小.
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.兩個全等的三角形一定關于某條直線對稱
B.關于某條直線對稱的兩個三角形一定全等
C.直角三角形是軸對稱圖形
D.銳角三角形是軸對稱圖形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線p: 的頂點為C,與x軸相交于A、B兩點(點A在點B左側),點C關于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點M在BC邊上,且∠MDF=∠ADF.
(1)求證:△ADE≌△BFE.
(2)連接EM,如果FM=DM,判斷EM與DF的關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李先生乘出租車去某公司辦事,下車時,打出的電子收費單為“里程11千米,應收29.10元”.該城市的出租車收費標準如下表所示,請求出起步價N(N<12).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店原來將進貨價為8元的商品按10元售出,每天可銷售200件.現在采用提高售價,減少進貨量的方法來增加利潤,已知每件商品漲價1元,每天的銷售量就減少20件.設這種商品每個漲價元.
(1)填空:原來每件商品的利潤是 元,漲價后每件商品的實際利潤是 元 (可用含的代數式表示);
(2)為了使每天獲得700元的利潤,售價應定為多少元?
(3)售價定為多少元時,每天利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知銳角△ABC中,CD、BE分別是AB、AC邊上的高,M、N分別是線段BC、DE的中點.
(1)求證:MN⊥DE.
(2)連結DM,ME,猜想∠A與∠DME之間的關系,并證明猜想.
(3)當∠A變?yōu)殁g角時,如圖,上述(1)(2)中的結論是否都成立, 若結論成立,直接回答,不需證明;若結論不成立,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,將正方形向上平移3個單位后,得到的正方形各頂點與原正方形各頂點坐標相比( 。
A.橫坐標不變,縱坐標加 3B.縱坐標不變,橫坐標加 3
C.橫坐標不變,縱坐標乘以 3D.縱坐標不變,橫坐標乘以 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題12分)如圖,在平面直角坐標系xOy中,一次函數(m為常數)的圖象與x軸交于點A(-3,0),與y軸交于點C,以直線x=1為對稱軸的拋物線y=ax2+bx+c(a、b、c為常數,且a≠0)經過A、C兩點,并與x軸的正半軸交于點B
(1) 求m的值及拋物線的函數表達式;
(2) 是否存在拋物線上一動點Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點Q的橫坐標;若存在,請說明理由;
(3) 若P是拋物線對稱軸上一動點,且使△ACP周長最小,過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試問是否為定值,如果是,請求出結果,如果不是請說明理由. (參考公式:在平面直角坐標之中,若A((x1,y1),B(x2,y2),則A,B兩點間的距離為)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com