【題目】如圖,D為等邊三角形ABC內的一點,DA=5,DB=4,DC=3,將線段AD以點A為旋轉中心逆時針旋轉60°得到線段AD′,下列結論:①點D與點D′的距離為5;②∠ADC=150°;③△ACD′可以由△ABD繞點A逆時針旋轉60°得到;④點D到CD′的距離為3;⑤S四邊形ADCD′ =6+.其中正確的有( )
A.2個B.3個C.4個D.5個
【答案】B
【解析】
連結DD′,根據(jù)旋轉的性質得AD=AD′,∠DAD′=60°,可判斷△ADD′為等邊三角形,則DD′=5,可對①進行判斷;由△ABC為等邊三角形得到AB=AC,∠BAC=60°,則把△ABD逆時針旋轉60°后,AB與AC重合,AD與AD′重合,于是可對③進行判斷;再根據(jù)勾股定理的逆定理得到△DD′C為直角三角形,則可對②④進行判斷;由于四邊形ADCD′的面積=△ADD′的面積+△D′DC的面積,利用等邊三角形的面積公式和直角三角形面積公式計算后可對⑤進行判斷.
解:連結DD′,如圖,
∵線段AD以點A為旋轉中心逆時針旋轉60°得到線段AD′,
∴AD=AD′,∠DAD′=60°,
∴△ADD′為等邊三角形,
∴DD′=5,所以①正確;
∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°,
∴把△ABD逆時針旋轉60°后,AB與AC重合,AD與AD′重合,
∴△ACD′可以由△ABD繞點A逆時針旋轉60°得到,所以③正確;
∴D′C=DB=4,
∵DC=3,
在△DD′C中,
∵32+42=52,
∴DC2+D′C2=DD′2,
∴△DD′C為直角三角形,
∴∠DCD′=90°,
∵△ADD′為等邊三角形,
∴∠ADD′=60°,
∴∠ADC≠150°,所以②錯誤;
∵∠DCD′=90°,
∴DC⊥CD′,
∴點D到CD′的距離為3,所以④正確;
∵S△ADD′+S△D′DC
=6+所以⑤錯誤.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線()與直線平行,且與直線交于點.
(1)求直線的函數(shù)表達式;
(2)、分別是直線、上兩點,點的橫坐標為,且軸,若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多好佳水果店在批發(fā)市場購買某種水果銷售,第一次用1500元購進若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進價比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價45%售完剩余的水果.
(1)第一次水果的進價是每千克多少元?
(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C,D兩點,點E為⊙O上一動點,CF⊥AE于F,則弦AB的長度為________;點E在運動過程中,線段FG的長度的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地間的直線公路長為千米.一輛轎車和一輛貨車分別沿該公路從甲、乙兩地以各自的速度勻速相向而行,貨車比轎車早出發(fā)小時,途中轎車出現(xiàn)了故障,停下維修,貨車仍繼續(xù)行駛.小時后轎車故障被排除,此時接到通知,轎車立刻掉頭按原路原速返回甲地(接到通知及掉頭時間不計).最后兩車同時到達甲地,已知兩車距各自出發(fā)地的距離(千米)與轎車所用的時間(小時)的關系如圖所示,請結合圖象解答下列問題:
(1)貨車的速度是_______千米/小時;轎車的速度是_______千米/小時;值為_______.
(2)求轎車距其出發(fā)地的距離(千米)與所用時間(小時)之間的函數(shù)關系式并寫出自變量的取值范圍;
(3)請直接寫出貨車出發(fā)多長時間兩車相距千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華同學對圖形旋轉前后的線段之間、角之間的關系進行了拓展探究.
(一)猜測探究
在△ABC中,AB=AC,M是平面內任意一點,將線段AM繞點A按順時針方向旋轉與∠BAC相等的角度,得到線段AN,連接NB.
(1)如圖1,若M是線段BC上的任意一點,請直接寫出∠NAB與∠MAC的數(shù)量關系是_______,NB與MC的數(shù)量關系是_______;
(2)如圖2,點E是AB延長線上點,若M是∠CBE內部射線BD上任意一點,連接MC,(1)中結論是否仍然成立?若成立,請給予證明,若不成立,請說明理由。
(二)拓展應用
如圖3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意點,連接A1P,將A1P繞點A1按順時針方向旅轉60°,得到線段A1Q,連接B1Q.求線段B1Q長度的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.
(1)證明:∠BAC=∠DAC.
(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com